86 research outputs found

    Inoculation with plant growth-promoting bacteria improves the sustainability of tropical pastures with Megathyrsus maximus.

    Get PDF
    ABSTRACT - Brazil is the second-largest producer and the first exporter of beef, with herds mainly raised in extensive pastures, where Megathyrsus maximus occupies over 30 Mha. About 70% of the pastures are under degradation, and using plant growth-promoting bacteria (PGPB) may contribute to reversing this scenario. We investigated the effects of PGPB on the growth of six cultivars of M. maximus-Tanzania-1, Massai, BRS Zuri, Mombaça, BRS Tamani, and BRS Quênia-under greenhouse conditions. Plants were inoculated, or not, with the elite strains of Azospirillum brasilense CNPSo 2083 + CNPSo 2084, Bacillus subtilis CNPSo 2657, Pseudomonas fluorescens CNPSo 2719, or Rhizobium tropici CNPSo 103. At 35 days after emergence, plants were evaluated for ten root growth traits, shoot dry weight, and the levels of macro and micronutrients accumulated in shoots. Several root traits were increased due to inoculation in all genotypes, impacting plant growth and nutrient uptake. Despite the differences in effectiveness, all genotypes benefited from PGPB to some degree, but Mombaça and BRS Zuri were more responsive. Scanning electron microscopy indicated that bacterial species differed in their capacity to colonize seeds and rootlets. The results show that inoculation with elite PGPB strains may represent an important strategy for the sustainability of M. maximus pastures

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain-behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.

    Get PDF
    Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability
    corecore