4 research outputs found
Comparative Analysis of Open Source Frameworks for Machine Learning with Use Case in Single-Threaded and Multi-Threaded Modes
The basic features of some of the most versatile and popular open source
frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are
considered and compared. Their comparative analysis was performed and
conclusions were made as to the advantages and disadvantages of these
platforms. The performance tests for the de facto standard MNIST data set were
carried out on H2O framework for deep learning algorithms designed for CPU and
GPU platforms for single-threaded and multithreaded modes of operation.Comment: 4 pages, 6 figures, 4 tables; XIIth International Scientific and
Technical Conference on Computer Sciences and Information Technologies (CSIT
2017), Lviv, Ukrain
Système de segmentation adaptatif pour des applications de visoconférences
PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Mathématiques rech (751052111) / SudocSudocFranceF