8,686 research outputs found

    Complete set of invariants for a Bykov attractor

    Get PDF
    In this paper we consider an attracting heteroclinic cycle made by a 1-dimensional and a 2-dimensional separatrices between two hyperbolic saddles having complex eigenvalues. The basin of the global attractor exhibits historic behaviour and, from the asymptotic properties of these non-converging time averages, we obtain a complete set of invariants under topological conjugacy in a neighborhood of the cycle. These invariants are determined by the quotient of the real parts of the eigenvalues of the equilibria, a linear combination of their imaginary components and also the transition maps between two cross sections on the separatrices.Comment: 23 pages, 4 figure

    Dense heteroclinic tangencies near a Bykov cycle

    Get PDF
    This article presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a neighbourhood of a Bykov cycle where trajectories turn in opposite directions near the two nodes --- we say that the nodes have different chirality. We show that in the set of vector fields defined on a three-dimensional manifold, there is a class where tangencies of the invariant manifolds of two hyperbolic saddle-foci occur densely. The class is defined by the presence of the Bykov cycle, and by a condition on the parameters that determine the linear part of the vector field at the equilibria. This has important consequences: the global dynamics is persistently dominated by heteroclinic tangencies and by Newhouse phenomena, coexisting with hyperbolic dynamics arising from transversality. The coexistence gives rise to linked suspensions of Cantor sets, with hyperbolic and non-hyperbolic dynamics, in contrast with the case where the nodes have the same chirality. We illustrate our theory with an explicit example where tangencies arise in the unfolding of a symmetric vector field on the three-dimensional sphere

    On Takens' Last Problem: tangencies and time averages near heteroclinic networks

    Get PDF
    We obtain a structurally stable family of smooth ordinary differential equations exhibiting heteroclinic tangencies for a dense subset of parameters. We use this to find vector fields C2C^2-close to an element of the family exhibiting a tangency, for which the set of solutions with historic behaviour contains an open set. This provides an affirmative answer to Taken's Last Problem (F. Takens (2008) Nonlinearity, 21(3) T33--T36). A limited solution with historic behaviour is one for which the time averages do not converge as time goes to infinity. Takens' problem asks for dynamical systems where historic behaviour occurs persistently for initial conditions in a set with positive Lebesgue measure. The family appears in the unfolding of a degenerate differential equation whose flow has an asymptotically stable heteroclinic cycle involving two-dimensional connections of non-trivial periodic solutions. We show that the degenerate problem also has historic behaviour, since for an open set of initial conditions starting near the cycle, the time averages approach the boundary of a polygon whose vertices depend on the centres of gravity of the periodic solutions and their Floquet multipliers. We illustrate our results with an explicit example where historic behaviour arises C2C^2-close of a SO(2)\textbf{SO(2)}-equivariant vector field

    Global bifurcations close to symmetry

    Get PDF
    Heteroclinic cycles involving two saddle-foci, where the saddle-foci share both invariant manifolds, occur persistently in some symmetric differential equations on the 3-dimensional sphere. We analyse the dynamics around this type of cycle in the case when trajectories near the two equilibria turn in the same direction around a 1-dimensional connection - the saddle-foci have the same chirality. When part of the symmetry is broken, the 2-dimensional invariant manifolds intersect transversely creating a heteroclinic network of Bykov cycles. We show that the proximity of symmetry creates heteroclinic tangencies that coexist with hyperbolic dynamics. There are n-pulse heteroclinic tangencies - trajectories that follow the original cycle n times around before they arrive at the other node. Each n-pulse heteroclinic tangency is accumulated by a sequence of (n+1)-pulse ones. This coexists with the suspension of horseshoes defined on an infinite set of disjoint strips, where the first return map is hyperbolic. We also show how, as the system approaches full symmetry, the suspended horseshoes are destroyed, creating regions with infinitely many attracting periodic solutions
    • …
    corecore