20,894 research outputs found
Inverse type II seesaw mechanism and its signature at the LHC and ILC
The advent of the LHC, and the proposal of building future colliders as the
ILC, both programmed to explore new physics at the TeV scale, justifies the
recent interest in studying all kind of seesaw mechanisms whose signature lies
on such energy scale. The natural candidate for this kind of seesaw mechanism
is the inverse one. The conventional inverse seesaw mechanism is implemented in
an arrangement involving six new heavy neutrinos in addition to the three
standard ones. In this paper we develop the inverse seesaw mechanism based on
Higgs triplet model and probe its signature at the LHC and ILC. We argue that
the conjoint analysis of the LHC together with the ILC may confirm the
mechanism and, perhaps, infer the hierarchy of the neutrino masses.Comment: 24 pages, 22 figure
A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes
We describe a finite-volume method for solving the Poisson equation on
oct-tree adaptive meshes using direct solvers for individual mesh blocks. The
method is a modified version of the method presented by Huang and Greengard
(2000), which works with finite-difference meshes and does not allow for shared
boundaries between refined patches. Our algorithm is implemented within the
FLASH code framework and makes use of the PARAMESH library, permitting
efficient use of parallel computers. We describe the algorithm and present test
results that demonstrate its accuracy.Comment: 10 pages, 6 figures, accepted by the Astrophysical Journal; minor
revisions in response to referee's comments; added char
Generalization of Dirac Non-Linear Electrodynamics, and Spinning Charged Particles
In this note we generalized the Dirac non-linear electrodynamics, by
introducing two potentials (namely, the vector potential A and the
pseudo-vector potential gamma^5 B of the electromagnetic theory with charges
and magnetic monopoles) and by imposing the pseudoscalar part of the product
omega.omega* to be zero, with omega = A + gamma^5 B. We show that the field
equations of such a theory possess a soliton-like solution which can represent
a priori a "charged particle", since it is endowed with a Coulomb field plus
the field of a magnetic dipole. The rest energy of the soliton is finite, and
the angular momentum stored in its electromagnetic field can be identified
--for suitable choices of the parameters-- with the spin of the charged
particle. Thus this approach seems to yield a classical model for the charged
(spinning) particle, which does not meet the problems met by earlier attempts
in the same direction.Comment: standard LaTeX file; 16 pages; it is a corrected version of a paper
appeared in Found. Phys. (issue in honour of A.O.Barut) 23 (1993) 46
Efeito do teor proteíco do concentrado no consumo de cana-de-açúcar com uréia e ganho de peso de novilhas em crescimento.
O efeito de diferentes suplementos proteicos no consumo de cana-de-acucar com ureia foi avaliado em novilhas mesticas de Holandes-Zebu , durante a estacao seca. Dezoito novilhas com peso medio inicial de 288kg e idade variando entre 15 a 22 meses foram suplementados com farelo de soja ou com concentrado contendo 28,7% de proteina bruta.\
Superconducting charge qubits from a microscopic many-body perspective
The quantised Josephson junction equation that underpins the behaviour of
charge qubits and other tunnel devices is usually derived through cannonical
quantisation of the classical macroscopic Josephson relations. However, this
approach may neglect effects due to the fact that the charge qubit consists of
a superconducting island of finite size connected to a large superconductor.
We show that the well known quantised Josephson equation can be derived
directly and simply from a microscopic many-body Hamiltonian. By choosing the
appropriate strong coupling limit we produce a highly simplified Hamiltonian
that nevertheless allows us to go beyond the mean field limit and predict
further finite-size terms in addition to the basic equation.Comment: Accepted for J Phys Condensed Matte
- …