41 research outputs found

    Collagen concentration and biomechanical properties of samples from the lower uterine cervix in relation to age and parity in non-pregnant women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During normal pregnancy the cervix has a load bearing function. The cervical tissue consists mainly of an extracellular matrix (ECM) rich in collagen; important for the biomechanical properties. The aim of the present study was to evaluate how the biomechanical strength of samples from the distal cervix is associated with collagen content in relation to age and parity. This study demonstrates a method to investigate cervical tissue from women who still have their uterus in situ.</p> <p>Methods</p> <p>Cervical punch biopsies (2 × 15 mm) were obtained from 57 healthy women (median age: 39 years, range: 29-49 years). Biomechanical tensile testing was performed, and collagen concentration (as % of dry defatted weight (DDW)) and content (mg of collagen per mm of specimen length) was determined. Histomorphometry was used to determine the volume densities of extracellular matrix and smooth muscle cells. Smooth muscle cells were identified by immunohistochemistry. Finally, orientation of collagen fibers was estimated. Data are given as mean +/- SD.</p> <p>Results</p> <p>The mean collagen concentration (62.2 +/- 6.6%) increased with age (0.5% per year, r = 0.45, p = 0.003) and decreased with parity (1.7% per birth, r = -0.45, p = 0.033). Maximum load was positively correlated with collagen content (mg of collagen per mm of specimen length) (r = 0.76, p < 0.001). Normalized maximum stiffness was increased with age (r = 0.32, p = 0.017), whereas no correlation was found with regard to parity. In tissue samples with a length of approximately one cm, volume density of smooth muscle cells increased gradually from 8.9% in the distal part near the epithelium, to 15.5% in the proximal part (p < 0.001).</p> <p>Conclusions</p> <p>The present study shows that cervical collagen concentration increases with age and decreases with parity in non-pregnant women. In addition, collagen stiffness increased with age, whereas no change in collagen tensile strength with respect to age and parity was found. These results show that collagen contributes to cervical tissue tensile strength and age and parity should be considered confounding factors.</p

    On the Role of Faith in Sustainability Management: A Conceptual Model and Research Agenda

    Get PDF
    International audienceThe objective of this article is to develop a faith development perspective on corporate sustainability. A firm’s management of sustainability is arguably determined by the way decision-makers relate to the other and the natural environment, and this relationship is fundamentally shaped by faith. This study advances theoretical understanding of the approach managers take on sustainability issues by explaining how four distinct phases of faith development—improvidence, obedience, irreverence and providence—determine a manager’s disposition towards sustainability. Combining insights from intentional and relational faith development theories, the analysis reveals that a manager’s faith disposition can be measured according to four interrelated process criteria: (1) connectivity as a measure of a manager’s actual engagement and activities aimed at relating to sustainability; (2) inclusivity as a measure of who and what is included or excluded in a manager’s moral consideration; (3) emotional affinity as a measure of a manager’s sensitivity and affection towards the well-being of others and ecological welfare; and (4) reciprocity as a measure of the degree to which a manager is rewarded for responding to the needs and concerns of ‘Others’, mainly in the form of a positive emotional (and relational) stimulus. The conceptual model consolidates earlier scholarly works on the psychological drivers of sustainability management by illuminating our search for a process of faith development that connects with an increasingly complex understanding of the role of business in society

    Architecture of the Oman-UAE ophiolite : evidence for a multi-phase magmatic history

    Get PDF
    The Oman–United Arab Emirates ophiolite is the world’s largest ophiolite. It is divided into 12 separate faultbounded blocks, of which the northern three lie wholly or partly in the United Arab Emirates. Extensive mapping has shown that the United Arab Emirates blocks contain mantle and crustal sections which correspond to the classic ‘Penrose conference’ ophiolite definition but which are cut by a voluminous later magmatic sequence including ultramafic, mafic and felsic components. Samples from the later magmatic sequence are dated at 96.4±0.3, 95.74±0.3 and 95.2±0.3 Ma; the early crustal section, which has not been dated directly, is thus constrained to be older than c. 96.4 Ma. Petrological evidence shows that the early crustal section formed at a spreading ridge, but the later magmatic sequence was formed from hydrous magmas that produced different mineral crystallisation sequences to normal midocean ridge basalt (MORB). Mineral and whole-rock geochemical analyses show that the early crustal rocks are chemically similar to MORB, but the later magmatic sequence has chemical features typically found in suprasubduction zone (SSZ) settings. The ophiolite in the United Arab Emirates thus preserves clear evidence for two stages of magmatism, an early episode formed at a spreading centre and a later episode associated with the onset of subduction. Similar two-stage magmatism has been recognised in the Oman sector, but the United Arab Emirates contains the most voluminous SSZ magmatism yet described from this ophiolite
    corecore