15,414 research outputs found

    Variations of the Energy of Free Particles in the pp-Wave Spacetimes

    Full text link
    We consider the action of exact plane gravitational waves, or pp-waves, on free particles. The analysis is carried out by investigating the variations of the geodesic trajectories of the particles, before and after the passage of the wave. The initial velocities of the particles are non-vanishing. We evaluate numerically the Kinetic energy per unit mass of the free particles, and obtain interesting, quasi-periodic behaviour of the variations of the Kinetic energy with respect to the width λ\lambda of the gaussian that represents the wave. The variation of the energy of the free particle is expected to be exactly minus the variation of the energy of the gravitational field, and therefore provides an estimation of the local variation of the gravitational energy. The investigation is carried out in the context of short bursts of gravitational waves, and of waves described by normalised gaussians, that yield impulsive waves in a certain limit.Comment: 20 pages, 18 figures, further arguments supporting the localizability of the gravitational energy are presented, published in Univers

    Gravitational pressure on event horizons and thermodynamics in the teleparallel framework

    Full text link
    The concept of gravitational pressure is naturally defined in the context of the teleparallel equivalent of general relativity. Together with the definition of gravitational energy, we investigate the thermodynamics of rotating black holes in the teleparallel framework. We obtain the value of the gravitational pressure over the external event horizon of the Kerr black hole, and write an expression for the thermodynamic relation TdS=dE+pdVTdS =dE + pdV, where the variations refer to the Penrose process for the Kerr black hole. We employ only the notions of gravitational energy and pressure that arise in teleparallel gravity, and do not make any consideration of the area or the variation of the area of the event horizon. However, our results are qualitatively similar to the standard expression of the literature.Comment: 17 pages, 6 figure

    A computationally efficient method for calculating the maximum conductance of disordered networks: Application to 1-dimensional conductors

    Full text link
    Random networks of carbon nanotubes and metallic nanowires have shown to be very useful in the production of transparent, conducting films. The electronic transport on the film depends considerably on the network properties, and on the inter-wire coupling. Here we present a simple, computationally efficient method for the calculation of conductance on random nanostructured networks. The method is implemented on metallic nanowire networks, which are described within a single-orbital tight binding Hamiltonian, and the conductance is calculated with the Kubo formula. We show how the network conductance depends on the average number of connections per wire, and on the number of wires connected to the electrodes. We also show the effect of the inter-/intra-wire hopping ratio on the conductance through the network. Furthermore, we argue that this type of calculation is easily extendable to account for the upper conductivity of realistic films spanned by tunneling networks. When compared to experimental measurements, this quantity provides a clear indication of how much room is available for improving the film conductivity.Comment: 7 pages, 5 figure
    • …
    corecore