498 research outputs found

    Case Report: Intrapulmonary Arteriovenous Anastomoses in COVID-19-Related Pulmonary Vascular Changes: A New Player in the Arena?

    Get PDF
    Up to now, COVID-19-related vascular changes were mainly described as thrombo-embolic events. A handful of researchers reported another type of vascular abnormality referred to as "vascular thickening" or "vascular enlargement," without specifying whether the dilated vessels are arteries or veins nor providing a physiopathological hypothesis. Our observations indicate that the vascular dilatation occurs in the venous compartment, and underlying mechanisms might include increased blood flow due to inflammation and the activation of arteriovenous anastomoses

    Solvability for a nonlinear coupled system of Kirchhoff type for the beam equations with nonlocal boundary conditions

    Get PDF
    In this paper, we investigate a mathematical model for a nonlinear coupled system of Kirchhoff type of beam equations with nonlocal boundary conditions. We establish existence, regularity and uniqueness of strong solutions. Furthermore, we prove the uniform rate of exponential decay. The uniform rate of polynomial decay is considered

    Impact of COVID-19 pneumonia on pulmonary vascular volume.

    Get PDF
    Pulmonary manifestations of COVID-19 pneumonia are well known. However, COVID-19 is also associated with a range of vascular manifestations such as embolism, congestion, and perfusion changes. Regarding congestion, research from different groups has suggested arteriovenous anastomosis dysregulation as a contributing factor. In this study, we aim to better describe the changes in vascular volume in affected lung zones and to relate them to pathophysiological hypotheses. We performed automatic vascular volume extraction in 10 chest CTs of patients, including 2 female and 8 male with a mean age of 63.5 ± 9.3 years, diagnosed with COVID-19 pneumonia. We compared the proportion of vascular volumes between manually segmented regions of lung parenchyma with and without signs of pneumonia. The proportion of vascular volume was significantly higher in COVID (CVasc) compared to non-COVID (NCVasc) areas. We found a mean difference (DVasc) of 5% and a mean ratio (RVasc) of 3.7 between the two compartments (p < 0.01). Vascular volume in COVID-19 affected lung parenchyma is augmented relative to normal lung parenchyma, indicating venous congestion and supporting the hypothesis of pre-existing intra-pulmonary arteriovenous shunts

    Manganese Defective Clustering: Influence on the Spectroscopic Features of Ceria-Based Nanomaterials

    Get PDF
    The influence of manganese modification on the spectroscopic features of manganese-doped CeO2 systems synthesized by the microwave-assisted hydrothermal route and their correlation with the presence of O defective structures were verified, focusing on their interaction with poisonous atmospheres. Raman and electron paramagnetic resonance studies confirmed the presence of defective clusters formed by dipoles and/or quadrupoles. The number of paramagnetic species was found to be inversely proportional to the doping concentration, resulting in an increase in the Mn2+ signal, likely due to the reduction of Mn3+ species after the interaction with CO. X-ray photoelectron spectroscopy data showed the pure system with 33% of its cerium species in the Ce3+ configuration, with an abrupt decrease to 19%, after the first modification with Mn, suggesting that 14% of the Ce3+ species are donating one electron to the Mn2+ ions, thus becoming nonparamagnetic Ce4+ species. On the contrary, 58% of the manganese species remain in the Mn2+ configuration with five unpaired electrons, corroborating the paramagnetic feature of the samples seen in the electron paramagnetic resonance study

    Vitamin E-analog Trolox prevents endoplasmic reticulum stress in frozen-thawed ovarian tissue of capuchin monkey (Sapajus apella)

    Get PDF
    Ovarian fragments were exposed to 0.5 M sucrose and 1 M ethylene glycol (freezing solution; FS) with or without selenium or Trolox. Histological and ultrastructural analyses showed that the percentages of normal follicles in control tissue and in tissue after exposure to FS+50 μM Trolox were similar. Trolox prevented endoplasmic reticulum (ER)-related vacuolization, which is commonly observed in oocytes and stromal tissue after exposure to FS. From the evaluated stress markers, superoxide dismutase 1 (SOD1) was up-regulated in ovarian tissue exposed to FS+10 ng/ml selenium. Ovarian fragments were subsequently frozenthawed in the presence of FS with or without 50 μM Trolox, followed by in vitro culture (IVC). Antioxidant capacity in ovarian fragments decreased after freeze-thawing in Troloxfree FS compared with FS+50 μMTrolox. Although freezing itself minimized the percentage of viable follicles in each solution, Trolox supplementation resulted in higher rates of viable follicles (67 %), even after IVC (61 %). Furthermore, stress markers SOD1 and ERp29 were up-regulated in ovarian tissue frozen-thawed in Trolox-free medium. Relative mRNA expression of growth factors markers was evaluated after freeze-thawing followed by IVC. BMP4, BMP5, CTGF, GDF9 and KL were down-regulated independently of the presence of Trolox in FS but down-regulation was less pronounced in the presence of Trolox. Thus, medium supplementation with 50 μMTrolox prevents ER stress and, consequently, protects ovarian tissue from ER-derived cytoplasmic vacuolization. ERp29 but not ERp60, appears to be a key marker linking stress caused by freezing-thawing and cell vacuolization.http://link.springer.com/journal/441hb201
    corecore