2,746 research outputs found

    Remarks on the use of projected densities in the density dependent part of Skyrme or Gogny functionals

    Full text link
    I discuss the inadequacy of the "projected density" prescription to be used in density dependent forces/functionals when calculations beyond mean field are pursued. The case of calculations aimed at the symmetry restoration of mean fields obtained with effective realistic forces of the Skyrme or Gogny type is considered in detail. It is shown that at least for the restoration of spatial symmetries like rotations, translations or parity the above prescription yields catastrophic results for the energy that drive the intrinsic wave function to configurations with infinite deformation, preventing thereby its use both in projection after and before variation.Comment: To be published as a contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Dual characterization of critical fluctuations: Density functional theory & nonlinear dynamics close to a tangent bifurcation

    Full text link
    We improve on the description of the relationship that exists between critical clusters in thermal systems and intermittency near the onset of chaos in low-dimensional systems. We make use of the statistical-mechanical language of inhomogeneous systems and of the renormalization group (RG) method in nonlinear dynamics to provide a more accurate, formal, approach to the subject. The description of this remarkable correspondence encompasses, on the one hand, the density functional formalism, where classical and quantum mechanical analogues match the procedure for one-dimensional clusters, and, on the other, the RG fixed-point map of functional compositions that captures the essential dynamical behavior. We provide details of how the above-referred theoretical approaches interrelate and discuss the implications of the correspondence between the high-dimensional (degrees of freedom) phenomenon and low-dimensional dynamics.Comment: 8 figure

    Cluster radioactivity of Th isotopes in the mean-field HFB theory

    Full text link
    Cluster radioactivity is described as a very mass asymmetric fission process. The reflection symmetry breaking octupole moment has been used in a mean field HFB theory as leading coordinate instead of the quadrupole moment usually used in standard fission calculations. The procedure has been applied to the study of the ``very mass asymmetric fission barrier'' of several even-even Thorium isotopes. The masses of the emitted clusters as well as the corresponding half-lives have been evaluated on those cases where experimental data exist.Comment: Contribution to XIV Nuclear Physics Workshop at Kazimierz Dolny, Poland, Sept. 26-29, 200

    Microscopic description of fission in neutron-rich plutonium isotopes with the Gogny-D1M energy density functional

    Full text link
    The most recent parametrization D1M of the Gogny energy density functional is used to describe fission in the isotopes 232−280^{232-280} Pu. We resort to the methodology introduced in our previous studies [Phys. Rev. C \textbf{88}, 054325 (2013) and Phys. Rev. C \textbf {89}, 054310 (2014)] to compute the fission paths, collective masses and zero point quantum corrections within the Hartree-Fock-Bogoliubov framework. The systematics of the spontaneous fission half-lives tSF_{SF}, masses and charges of the fragments in Plutonium isotopes is analyzed and compared with available experimental data. We also pay attention to isomeric states, the deformation properties of the fragments as well as to the competition between the spontaneous fission and α\alpha-decay modes. The impact of pairing correlations on the predicted tSF_{SF} values is demonstrated with the help of calculations for 232−280^{232-280}Pu in which the pairing strengths of the Gogny-D1M energy density functional are modified by 5 %\% and 10 %\%, respectively. We further validate the use of the D1M parametrization through the discussion of the half-lives in 242−262^{242-262}Fm. Our calculations corroborate that, though the uncertainties in the absolute values of physical observables are large, the Gogny-D1M Hartree-Fock-Bogoliubov framework still reproduces the trends with mass and/or neutron numbers and therefore represents a reasonable starting point to describe fission in heavy nuclear systems from a microscopic point of view.Comment: 14 pages, 11 figures. arXiv admin note: text overlap with arXiv:1312.722
    • …
    corecore