79 research outputs found

    High-Resolution Imaging of Intracellular Calcium Fluctuations Caused by Oscillating Microbubbles

    Get PDF
    Ultrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble–cell interaction remains poorly understood. Because intracellular calcium (Cai 2+) is a key cellular regulator, unraveling the Cai 2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai 2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai 2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell–cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 μm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai 2+ fluctuations, providing new insight into the microbubble–cell interaction to aid clinical translation

    Regulation of intracellular free arachidonic acid in Aplysia nervous system

    Full text link
    We have studied the regulation of arachidonic acid (AA) uptake, metabolism, and release in Aplysia nervous system. Following uptake of [ 3 H]AA, the distribution of radioactivity in intracellular and extracellular lipid pools was measured as a function of time in the presence or absence of exogenous AA. The greatest amount of AA was esterified into phosphatidylinositol (relative to pool size). We found that the intracellular free AA pool underwent rapid turnover, and that radioactive free AA and eicosanoids were released at a rapid rate into the extracellular medium, both in the presence and absence of exogenous AA. Most of the released radioactivity originated from phosphatidylinositol.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48020/1/232_2005_Article_BF01868464.pd

    Retiming DAGs

    No full text
    This paper is devoted to a low-complexity algorithm for retiming circuits without cycles, i.e. whose network graph is a Direct Acyclic Graph (DAG). On one hand DAGs have a great practical importance, as shown by the on-line arithmetic circuits used as a target application in this paper. On the other hand retiming is a costly design optimization technique, in particular when applied to large circuits. Hence the need to design a specialized retiming algorithm to handle DAGs more eciently than general-purpose retiming algorithms. Our algorithm dramatically improves on current solutions in the literature: we gain an order of magnitude in the worst-case complexity, and we show convincing experimental results at the end of the paper

    Computational modelling for reliable flip-chip packaging at sub-100 micron pitch using isotropic conductive adhesives

    No full text
    This paper presents the assembly process using next generation electroformed stencils and Isotropic Conductive Adhesives (ICAs) as interconnection material. The utilisation of ICAs in flip-chip assembly process is investigated as an alternative to the lead and lead-free solder alloys and aims to ensure a low temperature (T < 100 °C) assembly process. The paper emphasizes and discusses in details the assembly of a flip-chip package based on copper columns bumped die and substrate with stencil printed ICA deposits at sub-100 μm pitch. A computational modelling approach is undertaken to provide comprehensive results on reliability trends of ICA joints subject to thermal cycling of the flip-chip assembly based on easy to use damage criteria and damage evaluation. Important design parameters in the package are selected and investigated using numerical modelling techniques to provide knowledge and understanding of their impact on the thermo-mechanical behaviour of the flip-chip ICA joints. Sensitivity analysis of the damage in the adhesive material is also carried out. Optimal design rules for enhanced performance and improved thermo-mechanical reliability of ICA assembled flip-chip packages are finally formulated

    Impacts of climate change on Australian marine mammals

    Full text link
    Increasing evidence suggests that climate change is negatively affecting marine ecosystems and biota. However, little is known of how climate change will impact marine mammals. This review aims to identify the effects of climatic variations on Australian marine mammals and determine their potential responses to climate change. Shifts in distributions and reproductive success have been associated with climatic factors, while stranding events, drowning of seal pups, exposure to altered water conditions and disease in several marine mammal species have followed extreme weather events. Climate change may produce distributional shifts as the ranges of warm-water species expand or shift southwards, and those of cold-water species contract. Reductions in the extent of key habitats, changes in breeding success, a greater incidence of strandings in dugongs and cetaceans, and increased exposure of coastal species to pollutants and pathogens are likely. The capacity of Australian marine mammals to adapt to climate change is poorly understood, though there is evidence that several species may be able to modify their physiology or behaviour in response to warming temperatures. To increase the resilience of marine mammals, it is necessary to address non-climatic threats, such as ensuring that key habitats are protected in Australia.14 page(s

    Mapping the Healthcare Chaplaincy Literature: An Analytical Review of Publications Authored by Chaplains and Theologians Between 2000 and 2018.

    No full text
    The body of theoretical and empirical research led by chaplains and theologians between 2000 and 2018 is developing into a rich, diverse, and methodologically rigorous healthcare chaplaincy literature, which this review proposes to map. Online keyword and bibliographical searches and specialist recommendations yielded 199 relevant publications, which we analyzed in terms of methodology, topic, and results. On this basis, this article identifies and describes five key areas of the literature: chaplains' practices, spirituality, research, impact, and healthcare professionals' practices of spiritual care. The discussion further highlights that publications would benefit from greater conceptual clarity, common research standards, and more critical research designs

    Characterization of Fly and Bottom Ashes Mixtures Treated using Sodium Lauryl Sulphate and Polyvinyl Alcohol

    No full text
    Malaysia promotes coal as an option for solid fuel in electric power generation. Demanding of electricity needs, therefore, has led to increase the coal consumption and thus producing more coal waste products. The disposal of coal waste ashes has been a main concern to power generation station due to the need of disposal sites and operational costs. This study investigates the composition of fly ash (FA) and bottom ash (BA) mixtures with difference component percentage treated with sodium lauryl sulphate (SLS) and polyvinyl alcohol (PVA) at 1.5 and 2.5 wt% solutions and examined in terms of specific gravity, pH, maximum dry density properties, and its surface morphology. Although the chemical composition of the SLS and PVA treated fly and bottom ashes studied in this current work is not altered extensively, significant changes could be observed in its physicochemical properties. Chemically treated fly and bottom ashes mixtures with SLS and PVA at 1.5 wt% solution exhibited specific gravity of 1.97 to 2.92 and high pH values within range of 9.28 to 10.52. The mixture of BA:FA=0:1 ratio depicting high maximum dry density of 1.35 to 1.56 g/cm3 in both SLS and PVA solutions at 1.5 and 2.5 wt%. Scanning electron microscopy image shows distinct surface morphologies of SLS-treated fly and bottom ashes mixture that the particles are packed closely, strongly bonded similar to popcorn shape due to the effect of active silanol groups acted on coal ashes surface with the presence of Al-O/Si-O/other oxides. These findings suggest that higher level of chemical interaction between the fly and bottom ashes particles, significantly enhances pozzolanic reactions such as shear strength, plasticity, cementing properties, and thus other engineering properties

    Ultra-fine pitch stencil printing for a low cost and low temperature flip-chip assembly process

    No full text
    This paper presents the results of a packaging process based on the stencil printing of isotropic conductive adhesives (ICAs) that form the interconnections of flip-chip bonded electronic packages. Ultra-fine pitch (sub-100-mum), low temperature (100degC), and low cost flip-chip assembly is demonstrated. The article details recent advances in electroformed stencil manufacturing that use microengineering techniques to enable stencil fabrication at apertures sizes down to 20mum and pitches as small as 30mum. The current state of the art for stencil printing of ICAs and solder paste is limited between 150-mum and 200-mum pitch. The ICAs-based interconnects considered in this article have been stencil printed successfully down to 50-mum pitch with consistent printing demonstrated at 90-mum pitch size. The structural integrity or the stencil after framing and printing is also investigated through experimentation and computational modeling. The assembly of a flip-chip package based on copper column bumped die and ICA deposits stencil printed at sub-100-mum pitch is described. Computational fluid dynamics modeling of the print performance provides an indicator on the optimum print parameters. Finally, an organic light emitting diode display chip is packaged using this assembly proces
    corecore