501 research outputs found
Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene)
Abstract Background Borna disease virus (BDV) is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G) is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa). BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results Class III viral fusion proteins (VFP) encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G). Conclusion These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes).</p
Virology on the Internet: the time is right for a new journal
Virology Journal is an exclusively on-line, Open Access journal devoted to the presentation of high-quality original research concerning human, animal, plant, insect bacterial, and fungal viruses. Virology Journal will establish a strategic alternative to the traditional virology communication process
An invitation to recent graduates: publish your dissertation/thesis background section as a review in Virology Journal
Virology Journal will publish background sections of approved dissertations or theses as Review Articles
Recommended from our members
Membrane-Mediated Alterations of Intracellular Na+ and K+ in Lytic-Virus-Infected and Retrovirus-Transformed Cells
Infection of chick-embryo fibroblasts and other ceils by certain animal viruses results in alterations in the intracellular concentrations of Na + and K +. Dramatic alterations in monovalent-cation concentrations of lytic-virus-infected ceils may favor the synthesis of viral proteins over cellular proteins. More subtle alterations in retrovirus-transformed cells may result in the expression of many morphological and biochemical changes associated with the transformed phenotype.Public Health Service Grant CA 26169, CA 27003National Cancer Institute CA 06593Integrative Biolog
Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines
<p>Abstract</p> <p>Background</p> <p>The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. <it>Plasmodium vivax </it>uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes.</p> <p>Results</p> <p>Variable loop 3 (V3) of HIV-1 SU and domain 1 of the <it>Plasmodium vivax </it>DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and <it>P. vivax </it>can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the <it>P. knowlesi </it>alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of <it>P. vivax </it>and <it>P. knowlesi </it>erythrocyte binding proteins.</p> <p>Conclusion</p> <p>A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.</p
Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines
<p>Abstract</p> <p>Background</p> <p>The HIV surface glycoprotein gp120 (SU, gp120) and the <it>Plasmodium vivax </it>Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions.</p> <p>Results</p> <p>Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC). A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the <it>P. knowlesi </it>alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes.</p> <p>Conclusion</p> <p>The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.</p
Characterization of the Lassa virus GP1 ectodomain shedding: implications for improved diagnostic platforms
<p>Abstract</p> <p>Background</p> <p>There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, detection of early markers of Lassa virus (LASV) infection may improve diagnosis and ultimately successful treatment with antivirals. Characterization of LASV GP1 ectodomain shedding is an important step toward developing sensitive diagnostics to detect circulating levels of this viral glycoprotein in infected patient sera.</p> <p>Results</p> <p>Secretion of GP1 from mammalian cells expressing a native LASV GPC gene was not mediated by proteolytic cleavage, as determined by treatment with a panel of matrix metalloprotease (MMP) inhibitors. The shedding of GP1 was also not the result of over-expression of GPC under the control of a strong intron-A containing CMV promoter, as the soluble component could be immunoprecipitated from supernatants of cells expressing low levels of GPC under the control of an intronless promoter. Cells transfected with GPC retained surface membrane-associated expression of GP1 as determined by immunofluorescence assay, in addition to secreting the glycoprotein.</p> <p>Secreted GP1 derived from GPC expression has a higher content of high mannose N-linked glycosylation than sGP1 expressed independently from the GP2 portion of the protein. Neither GP1 isoform contains sialylated N-glycans, O-linked carbohydrate chains, or galactose-β(1-4)-N-acetylglucosamine commonly present in complex and hybrid N-glycan structures.</p> <p>Conclusion</p> <p>These results demonstrate the non-proteolytic secretory nature of GP1 shedding during expression of the arenaviral glycoprotein complex. This phenomenon parallels shedding of a secretory glycoprotein component in filovirus replication. The glycosylation pattern of soluble GP1 resulting from expression of GPC was different from that of a soluble GP1 construct (sGP1-RRAA-FLAG), highlighting the intricately orchestrated post translational processing of the LASV glycoprotein complex.</p
Small interfering RNA targeted to stem-loop II of the 5' untranslated region effectively inhibits expression of six HCV genotypes
BACKGROUND: The antiviral action of interferon alpha targets the 5' untranslated region (UTR) used by hepatitis C virus (HCV) to translate protein by an internal ribosome entry site (IRES) mechanism. Although this sequence is highly conserved among different clinical strains, approximately half of chronically infected hepatitis C patients do not respond to interferon therapy. Therefore, development of small interfering RNA (siRNA) targeted to the 5'UTR to inhibit IRES mediated translation may represent an alternative approach that could circumvent the problem of interferon resistance. RESULTS: Four different plasmid constructs were prepared for intracellular delivery of siRNAs targeting the stem loop II-III of HCV 5' UTR. The effect of siRNA production on IRES mediated translation was investigated using chimeric clones between the gene for green fluorescence protein (GFP) and IRES sequences of six different HCV genotypes. The siRNA targeted to stem loop II effectively mediated degradation of HCV IRES mRNA and inhibited GFP expression in the case of six different HCV genotypes, where as siRNAs targeted to stem loop III did not. Furthermore, intracytoplasmic expression of siRNA into transfected Huh-7 cells efficiently degraded HCV genomic RNA and inhibited core protein expression from infectious full-length infectious clones HCV 1a and HCV 1b strains. CONCLUSION: These in vitro studies suggest that siRNA targeted to stem-loop II is highly effective inhibiting IRES mediated translation of the major genotypes of HCV. Stem-loop II siRNA may be a good target for developing an intracellular immunization strategy based antiviral therapy to inhibit hepatitis C virus strains that are not inhibited by interferon
Peptide inhibitors of dengue virus and West Nile virus infectivity
Viral fusion proteins mediate cell entry by undergoing a series of conformational changes that result in virion-target cell membrane fusion. Class I viral fusion proteins, such as those encoded by influenza virus and human immunodeficiency virus (HIV), contain two prominent alpha helices. Peptides that mimic portions of these alpha helices inhibit structural rearrangements of the fusion proteins and prevent viral infection. The envelope glycoprotein (E) of flaviviruses, such as West Nile virus (WNV) and dengue virus (DENV), are class II viral fusion proteins comprised predominantly of beta sheets. We used a physio-chemical algorithm, the Wimley-White interfacial hydrophobicity scale (WWIHS) [1] in combination with known structural data to identify potential peptide inhibitors of WNV and DENV infectivity that target the viral E protein. Viral inhibition assays confirm that several of these peptides specifically interfere with target virus entry with 50% inhibitory concentration (IC50) in the 10 μM range. Inhibitory peptides similar in sequence to domains with a significant WWIHS scores, including domain II (IIb), and the stem domain, were detected. DN59, a peptide corresponding to the stem domain of DENV, inhibited infection by DENV (>99% inhibition of plaque formation at a concentrations of <25 μM) and cross-inhibition of WNV fusion/infectivity (>99% inhibition at <25 μM) was also demonstrated with DN59. However, a potent WNV inhibitory peptide, WN83, which corresponds to WNV E domain IIb, did not inhibit infectivity by DENV. Additional results suggest that these inhibitory peptides are noncytotoxic and act in a sequence specific manner. The inhibitory peptides identified here can serve as lead compounds for the development of peptide drugs for flavivirus infection
Peptide inhibition of human cytomegalovirus infection
<p>Abstract</p> <p>Background</p> <p>Human cytomegalovirus (HCMV) is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV)- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB), a major glycoprotein of HCMV that is highly conserved across the <it>Herpesviridae </it>family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection.</p> <p>Results</p> <p>Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS), several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF) were infected with the Towne-GFP strain of HCMV (0.5 MOI), preincubated with peptides at a range of concentrations (78 nm to 100 μM), and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100 μM and 50 μM, respectively, and 60% at a concentration of 2.5 μM. While peptides 264-291 and 297-315, individually failed to inhibit viral infection, when combined, they showed 67% inhibition of HCMV infection at a concentration of 0.125 μM each.</p> <p>Conclusions</p> <p>Peptides designed to target putative fusogenic domains of gB provide a basis for the development of novel therapeutics that prevent HCMV infection.</p
- …