1,040 research outputs found

    Dissimilar effects of human and elephant disturbance on woodland structure and functional bird diversity in the mopane woodlands of Zambia

    Get PDF
    Context Humans and elephants are major disturbance agents in the African savanna woodlands. While both species remove trees, humans selectively harvest larger stems, which are less vulnerable to elephants. Increasing human pressures raise the question of how the altered disturbance regime will modify woodland structure, and in turn biodiversity and ecosystem function. Objectives Here we investigate this process in the mopane woodlands of Zambia by examining relationships between woodland structure, species and functional bird diversity, and human and elephant disturbance intensity. Methods We conducted a single-season comparison of 178 plots from 45 sites using Bayesian mixed models. Results The effect of elephants on tree density (− 7.7 ± 1.6%; deviation from intercept) and bird species richness (− 15 ± 6%) was greater than that of humans (density: − 3.5 ± 1.5%; bird richness: − 11.6 ± 4.7%). Despite this, elephants did not significantly affect woody biomass or functional bird diversity, whereas humans had a negative effect on both (woody biomass: − 9.3 ± 2.3%; functional bird diversity: − 5 ± 2%). Elephants were associated with reductions in species and functional turnover (5.3 ± 2.5% and 6 ± 3%, respectively). Conclusions Replacement of elephants by humans is likely to reduce woody biomass and functional bird diversity affecting the woodland structure, sustainability, and functioning. Concentrated elephant disturbance could lead to spatial homogeneity in bird species and functional compositions, potentially reducing the spatial resilience of bird communities. This is the first study to highlight how the difference between elephant and human disturbances leads to dissimilar effects on biodiversity

    Patterns of wood carbon dioxide efflux across a 2,000-m elevation transect in an Andean moist forest

    Get PDF
    During a 1-year measurement period, we recorded the CO2 efflux from stems (RS) and coarse woody roots (RR) of 13–20 common tree species at three study sites at 1,050, 1,890 and 3,050 m a.s.l. in an Andean moist forest. The objective of this work was to study elevation changes of woody tissue CO2 efflux and the relationship to climate variation, site characteristics and growth. Furthermore, we aim to provide insights into important respiration–productivity relationships of a little studied tropical vegetation type. We expected RS and RR to vary with dry and humid season conditions. We further expected RS to vary more than RR due to a more stable soil than air temperature regime. Seasonal variation in woody tissue CO2 efflux was indeed mainly attributable to stems. At the same time, temperature played only a small role in triggering variations in RS. At stand level, the ratio of C release (g C m−2 ground area year−1) between stems and roots varied from 4:1 at 1,050 m to 1:1 at 3,050 m, indicating the increasing prevalence of root activity at high elevations. The fraction of growth respiration from total respiration varied between 10 (3,050 m) and 14% (1,050 m) for stems and between 5 (1,050 m) and 30% (3,050 m) for roots. Our results show that respiratory activity and hence productivity is not driven by low temperatures towards higher elevations in this tropical montane forest. We suggest that future studies should examine the limitation of carbohydrate supply from leaves as a driver for the changes in respiratory activity with elevation

    The potential for sand dams to increase the adaptive capacity of East African drylands to climate change

    Get PDF
    Drylands are home to more than two billion people and are characterised by frequent, severe droughts. Such extreme events are expected to be exacerbated in the near future by climate change. A potentially simple and cost-effective mitigation measure against drought periods is sand dams. This little-known technology aims to promote subsoil rainwater storage to support dryland agro-ecosystems. To date, there is little long-term empirical analysis that tests the effectiveness of this approach during droughts. This study addresses this shortcoming by utilising multi-year satellite imagery to monitor the effect of droughts at sand dam locations. A time series of satellite images was analysed to compare vegetation at sand dam sites and control sites over selected periods of drought, using the normalised difference vegetation index. The results show that vegetation biomass was consistently and significantly higher at sand dam sites during periods of extended droughts. It is also shown that vegetation at sand dam sites recovers more quickly from drought. The observed findings corroborate modelling-based research which identified related impacts on ground water, land cover, and socio-economic indicators. Using past periods of drought as an analogue to future climate change conditions, this study indicates that sand dams have potential to increase adaptive capacity and resilience to climate change in drylands. It therefore can be concluded that sand dams enhance the resilience of marginal environments and increase the adaptive capacity of drylands. Sand dams can therefore be a promising adaptation response to the impacts of future climate change on drylands

    Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds

    Get PDF
    BACKGROUND: In order to maintain cohesion of groups, social animals need to process social information efficiently. Visual individual recognition, which is distinguished from mere visual discrimination, has been studied in only few mammalian species. In addition, most previous studies used either a small number of subjects or a few various views as test stimuli. Dairy cattle, as a domestic species allow the testing of a good sample size and provide a large variety of test stimuli due to the morphological diversity of breeds. Hence cattle are a suitable model for studying individual visual recognition. This study demonstrates that cattle display visual individual recognition and shows the effect of both familiarity and coat diversity in discrimination. [br/]METHODOLOGY/PRINCIPAL FINDINGS: We tested whether 8 Prim'Holstein heifers could recognize 2D-images of heads of one cow (face, profiles, (3/4) views) from those of other cows. Experiments were based on a simultaneous discrimination paradigm through instrumental conditioning using food rewards. In Experiment 1, all images represented familiar cows (belonging to the same social group) from the Prim'Holstein breed. In Experiments 2, 3 and 4, images were from unfamiliar (unknown) individuals either from the same breed or other breeds. All heifers displayed individual recognition of familiar and unfamiliar individuals from their own breed. Subjects reached criterion sooner when recognizing a familiar individual than when recognizing an unfamiliar one (Exp 1: 3.1+/-0.7 vs. Exp 2: 5.2+/-1.2 sessions; Z = 1.99, N = 8, P = 0.046). In addition almost all subjects recognized unknown individuals from different breeds, however with greater difficulty. [br/] CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that cattle have efficient individual recognition based on categorization capacities. Social familiarity improved their performance. The recognition of individuals with very different coat characteristics from the subjects was the most difficult task. These results call for studies exploring the mechanisms involved in face recognition allowing interspecies comparisons, including humans

    Srf1 Is a Novel Regulator of Phospholipase D Activity and Is Essential to Buffer the Toxic Effects of C16:0 Platelet Activating Factor

    Get PDF
    During Alzheimer's Disease, sustained exposure to amyloid-β42 oligomers perturbs metabolism of ether-linked glycerophospholipids defined by a saturated 16 carbon chain at the sn-1 position. The intraneuronal accumulation of 1-O-hexadecyl-2-acetyl-sn-glycerophosphocholine (C16:0 PAF), but not its immediate precursor 1-O-hexadecyl-sn-glycerophosphocholine (C16:0 lyso-PAF), participates in signaling tau hyperphosphorylation and compromises neuronal viability. As C16:0 PAF is a naturally occurring lipid involved in cellular signaling, it is likely that mechanisms exist to protect cells against its toxic effects. Here, we utilized a chemical genomic approach to identify key processes specific for regulating the sensitivity of Saccharomyces cerevisiae to alkyacylglycerophosphocholines elevated in Alzheimer's Disease. We identified ten deletion mutants that were hypersensitive to C16:0 PAF and five deletion mutants that were hypersensitive to C16:0 lyso-PAF. Deletion of YDL133w, a previously uncharacterized gene which we have renamed SRF1 (Spo14 Regulatory Factor 1), resulted in the greatest differential sensitivity to C16:0 PAF over C16:0 lyso-PAF. We demonstrate that Srf1 physically interacts with Spo14, yeast phospholipase D (PLD), and is essential for PLD catalytic activity in mitotic cells. Though C16:0 PAF treatment does not impact hydrolysis of phosphatidylcholine in yeast, C16:0 PAF does promote delocalization of GFP-Spo14 and phosphatidic acid from the cell periphery. Furthermore, we demonstrate that, similar to yeast cells, PLD activity is required to protect mammalian neural cells from C16:0 PAF. Together, these findings implicate PLD as a potential neuroprotective target capable of ameliorating disruptions in lipid metabolism in response to accumulating oligomeric amyloid-β42

    The big five personality traits, perfectionism and their association with mental health among UK students on professional degree programmes

    Get PDF
    Background In view of heightened rates of suicide and evidence of poor mental health among healthcare occupational groups, such as veterinarians, doctors, pharmacists and dentists, there has been increasing focus on the students aiming for careers in these fields. It is often proposed that a high proportion of these students may possess personality traits which render them vulnerable to mental ill-health. Aim To explore the relationship between the big five personality traits, perfectionism and mental health in UK students undertaking undergraduate degrees in veterinary medicine, medicine, pharmacy, dentistry and law. Methods A total of 1744 students studying veterinary medicine, medicine, dentistry, pharmacy and law in the UK completed an online questionnaire, which collected data on the big five personality traits (NEO-FFI), perfectionism (Frost Multidimensional Perfectionism Scale), wellbeing (Warwick-Edinburgh Mental Well-being Scale), psychological distress (General Health Questionnaire-12), depression (Beck Depression Inventory-II) and suicidal ideation and attempts. Results Veterinary, medical and dentistry students were significantly more agreeable than law students, while veterinary students had the lowest perfectionism scores of the five groups studied. High levels of neuroticism and low conscientiousness were predictive of increased mental ill-health in each of the student populations. Conclusions The study highlights that the prevailing anecdotal view of professional students possessing maladaptive personality traits that negatively impact on their mental health may be misplaced

    Advances in Pathway Engineering for Natural Product Biosynthesis

    Get PDF
    Biocatalysts provide an efficient, inexpensive and environmentally friendly alternative to traditional organic synthesis, especially for compounds with complex stereochemistries. The past decade has seen a significant rise in the use of biocatalysts for the synthesis of compounds in an industrial setting; however, the incorporation of single enzymatically catalysed steps into organic synthesis schemes can be problematic. The emerging field of synthetic biology has sparked interest in the development of whole-cell factories that can convert simple, common metabolites into complex, high-value molecules with a range of applications such as pharmaceuticals and biofuels. This Review summarises conventional methods and recent advances in metabolic engineering of pathways in microorganisms for the synthesis of natural products

    Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti

    Get PDF
    The Hermes transposable element has been used to genetically transform a wide range of insect species, including the mosquito, Aedes aegypti, a vector of several important human pathogens. Hermes integrations into the mosquito germline are characterized by the non-canonical integration of the transposon and flanking plasmid and, once integrated, Hermes is stable in the presence of its transposase. In an effort to improve the post-integration mobility of Hermes in the germline of Ae. aegypti, a transgenic helper Mos1 construct expressing Hermes transposase under the control of a testis-specific promoter was crossed to a separate transgenic strain containing a target Hermes transposon. In less than 1% of the approximately 1,500 progeny from jumpstarter lines analyzed, evidence of putative Hermes germline remobilizations were detected. These recovered transposition events occur through an aberrant mechanism and provide insight into the non-canonical cut-and-paste transposition of Hermes in the germ line of Ae. aegypti

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore