1,453 research outputs found

    Reappearance of an Embryonic Pattern of Fibronectin Splicing during Wound Healing in the Adult Rat

    Get PDF
    The adhesive extracellular matrix glycoprotein fibronectin (FN) is thought to play an important role in the cell migration associated with wound healing. Immunolocalization studies show abundant FN in healing wounds; however, these studies cannot define the cellular site(s) of FN synthesis, nor do they distinguish the different and potentially functionally distinct forms of FN that can arise from alternative splicing of the primary gene transcript. To examine these questions of FN synthesis and splicing during wound healing, we have performed in situ hybridization with segment-specific probes on healing wounds in adult rat skin. We find that the FN gene is expressed at increased levels after wounding both in the cells at the base of the wound and in subjacent muscle and dermis lateral to the wound. Interestingly, however, the pattern of splicing of FN mRNA was different in these areas. In adjacent dermis and muscle, the splicing pattern remains identical with that seen in normal adult rat skin, with two of the three spliced segments (EIIIA and EIIIB) excluded from FN mRNA. In contrast, these two segments are included in the FN mRNA present in the cells at the base of the wound. As a result, the mRNA in this region is spliced in a pattern identical with that found during early embryogenesis. The finding that the pattern of FN splicing during wound healing resembles an embryonic pattern suggests that alternative splicing may be used during wound healing as a mechanism to generate forms of FN that may be functionally more appropriate for the cell migration and proliferation associated with tissue repair

    Purification of Human Plasma/Cellular Fibronectin and Fibronectin Fragments

    Get PDF
    A method is described for the purification of plasma fibronectins based on a combination of gelatin- and arginine-Sepharose chromatography steps. Cellular fibronectin can be purified from an osteosarcoma fibroblast cell line by affinity chromatography using a monoclonal antibody anti-fibronectin as ligand. Furthermore, we also provide a protocol for the purification of fibronectin domains obtained by fractionation of thermolysin-digested plasma fibronectin on ion-exchange/gel filtration chromatography columns. Assessment of the fibronectin purity is performed by SDS-PAGE, while the ligand binding activities of specific fibronectin domains are determined by ELISA

    Use of an Immobilized Monoclonal Antibody to Examine Integrin α5β1 Signaling Independent of Cell Spreading

    Get PDF
    Cell attachment to the extracellular matrix (ECM) engages integrin signaling into the cell, but part of the signaling response also stem from cell spreading (3). To analyze specific integrin signaling-mediated responses independent of cell spreading, we developed a method engaging integrin signaling by use of an immobilized anti-integrin monoclonal antibody (mab) directed against the fibronectin (FN) receptor integrin α5β1. ECV 304 cells were plated onto FN or immobilized mab JBS5 (anti-integrin α5β1) or onto poly-L-lysin (P-L-L), which mediates integrin-independent attachment. Cells attached and spread on FN, while cells on JBS5 or P-L-L attached but did not spread. Importantly, plating onto FN or mab JBS5 gave rise to identical integrin-induced responses, including a down-regulation of the cyclin-dependent kinase (Cdk2) inhibitors p21(CIP1) and p27(KIP1), while attachment to P-L-L did not. We conclude that engagement of the FN-receptor integrin α5β1 induces integrin signaling regulating the Cdk2-inhibitors independent of cell spreading and present a method for how integrin signaling can be analyzed separate from the effects of cell spreading

    The effect of an external magnetic force on cell adhesion and proliferation of magnetically labeled mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the strategy for tissue regeneration using mesenchymal stem cells (MSCs) for transplantation, it is necessary that MSCs be accumulated and kept in the target area. To accumulate MSCs effectively, we developed a novel technique for a magnetic targeting system with magnetically labeled MSCs and an external magnetic force. In this study, we examined the effect of an external magnetic force on magnetically labeled MSCs in terms of cell adhesion and proliferation.</p> <p>Methods</p> <p>Magnetically labeled MSCs were plated at the bottom of an insert under the influence of an external magnetic force for 1 hour. Then the inserts were turned upside down for between 1 and 24 hours, and the number of MSCs which had fallen from the membrane was counted. The gene expression of MSCs affected magnetic force was analyzed with microarray. In the control group, the same procedure was done without the external magnetic force.</p> <p>Results</p> <p>At 1 hour after the inserts were turned upside down, the average number of fallen MSCs in the magnetic group was significantly smaller than that in the control group, indicating enhanced cell adhesion. At 24 hours, the average number of fallen MSCs in the magnetic group was also significantly smaller than that in control group. In the magnetic group, integrin alpha2, alpha6, beta3 BP, intercellular adhesion molecule-2 (ICAM-2), platelet/endothelial cell adhesion molecule-1 (PECAM-1) were upregulated. At 1, 2 and 3 weeks after incubation, there was no statistical significant difference in the numbers of MSCs in the magnetic group and control group.</p> <p>Conclusions</p> <p>The results indicate that an external magnetic force for 1 hour enhances cell adhesion of MSCs. Moreover, there is no difference in cell proliferation after using an external magnetic force on magnetically labeled MSCs.</p

    Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor

    Get PDF
    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels

    A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis

    Get PDF
    Extracellular matrix interactions have essential roles in normal physiology and many pathological processes. Although the importance of extracellular matrix interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel-screening platform capable of measuring phenotypic responses to combinations of extracellular matrix molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the extracellular matrix-dependent adhesion of tumour-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumour lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8 or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified extracellular matrix and integrin interactions that could serve as therapeutic targets.National Institutes of Health (U.S.) (Grant K99-CA151968)National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service AwardStand Up To Cancer (SU2C/AACR)David H. Koch Institute for Integrative Cancer Research at MIT (CTC Project)Harvard Stem Cell Institute (SG-0046-08-00)National Cancer Center (Postdoctoral Fellowship)National Cancer Institute (U.S.) (U54CA126515)National Cancer Institute (U.S.) (U54CA112967)Howard Hughes Medical InstituteMassachusetts Institute of Technology. Ludwig Center for Molecular Oncolog

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications
    • …
    corecore