11 research outputs found

    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cinnamomum cassia </it>bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8<sup>+ </sup>T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model.</p> <p>Methods</p> <p>Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer <it>in vitro </it>and <it>in vivo </it>mouse melanoma model.</p> <p>Results</p> <p>Cinnamon extract strongly inhibited tumor cell proliferation <it>in vitro </it>and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as <it>Bcl-2</it>, <it>BcL-xL </it>and <it>survivin</it>. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed <it>in vitro</it>.</p> <p>Conclusion</p> <p>Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes <it>in vitro </it>and <it>in vivo </it>mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers.</p

    A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Get PDF
    There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF) was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors

    Drug Discovery Using Chemical Systems Biology: Identification of the Protein-Ligand Binding Network To Explain the Side Effects of CETP Inhibitors

    Get PDF
    Systematic identification of protein-drug interaction networks is crucial to correlate complex modes of drug action to clinical indications. We introduce a novel computational strategy to identify protein-ligand binding profiles on a genome-wide scale and apply it to elucidating the molecular mechanisms associated with the adverse drug effects of Cholesteryl Ester Transfer Protein (CETP) inhibitors. CETP inhibitors are a new class of preventive therapies for the treatment of cardiovascular disease. However, clinical studies indicated that one CETP inhibitor, Torcetrapib, has deadly off-target effects as a result of hypertension, and hence it has been withdrawn from phase III clinical trials. We have identified a panel of off-targets for Torcetrapib and other CETP inhibitors from the human structural genome and map those targets to biological pathways via the literature. The predicted protein-ligand network is consistent with experimental results from multiple sources and reveals that the side-effect of CETP inhibitors is modulated through the combinatorial control of multiple interconnected pathways. Given that combinatorial control is a common phenomenon observed in many biological processes, our findings suggest that adverse drug effects might be minimized by fine-tuning multiple off-target interactions using single or multiple therapies. This work extends the scope of chemogenomics approaches and exemplifies the role that systems biology has in the future of drug discovery

    Inhibition of Ras-mediated signaling pathways in CML stem cells

    No full text
    Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the presence of the BCR-ABL1 oncoprotein in cells with a hematopoietic stem cell (HSC) origin. BCR-ABL1 tyrosine kinase activity leads to constitutive activation of Ras, which in turn acts as a branch point to initiate multiple downstream signaling pathways governing proliferation, self-renewal, differentiation and apoptosis. As aberrant regulation of these cellular processes causes transformation and disease progression particularly in advanced stages of CML, investigation of these signaling pathways may uncover new therapeutic targets for the selective eradication of CML stem cells. Transcription factors play a crucial role in unbalancing the Ras signaling network and have recently been investigated as potential modulators in this regard. In this review, we first briefly summarize the Ras-associated molecular pathways that are involved in the regulation of CML stem cell properties. Next we discuss the relevance of Ras-associated transcription factors as nuclear targets in combination treatment strategies for CML
    corecore