14 research outputs found

    The Energy Landscapes of Repeat-Containing Proteins: Topology, Cooperativity, and the Folding Funnels of One-Dimensional Architectures

    Get PDF
    Repeat-proteins are made up of near repetitions of 20ā€“ to 40ā€“amino acid stretches. These polypeptides usually fold up into non-globular, elongated architectures that are stabilized by the interactions within each repeat and those between adjacent repeats, but that lack contacts between residues distant in sequence. The inherent symmetries both in primary sequence and three-dimensional structure are reflected in a folding landscape that may be analyzed as a quasiā€“one-dimensional problem. We present a general description of repeat-protein energy landscapes based on a formal Ising-like treatment of the elementary interaction energetics in and between foldons, whose collective ensemble are treated as spin variables. The overall folding properties of a complete ā€œdomainā€ (the stability and cooperativity of the repeating array) can be derived from this microscopic description. The one-dimensional nature of the model implies there are simple relations for the experimental observables: folding free-energy (Ī”Gwater) and the cooperativity of denaturation (m-value), which do not ordinarily apply for globular proteins. We show how the parameters for the ā€œcoarse-grainedā€ description in terms of foldon spin variables can be extracted from more detailed folding simulations on perfectly funneled landscapes. To illustrate the ideas, we present a case-study of a family of tetratricopeptide (TPR) repeat proteins and quantitatively relate the results to the experimentally observed folding transitions. Based on the dramatic effect that single point mutations exert on the experimentally observed folding behavior, we speculate that natural repeat proteins are ā€œpoisedā€ at particular ratios of inter- and intra-element interaction energetics that allow them to readily undergo structural transitions in physiologically relevant conditions, which may be intrinsically related to their biological functions

    Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ī²-amyloid precursor protein (APP) and the related Ī²-amyloid precursor-like proteins (APLPs) undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that AĪ² accumulation is a central trigger for Alzheimer's disease, the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPsĪ± ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The Ī³-secretase-generated APP intracellular domain (AICD) functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial.</p> <p>Results</p> <p>To gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators, we performed DNA microarray transcriptome profiling of prefrontal cortex of adult wild-type (WT), APP knockout (APP<sup>-/-</sup>), APLP2 knockout (APLP2<sup>-/-</sup>) and APPsĪ± knockin mice (APP<sup>Ī±/Ī±</sup>) expressing solely the secreted APPsĪ± ectodomain. Biological pathways affected by the lack of APP family members included neurogenesis, transcription, and kinase activity. Comparative analysis of transcriptome changes between mutant and wild-type mice, followed by qPCR validation, identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity-related genes that were both down-regulated in knockout cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including <it>Bace1</it>, <it>Kai1</it>, <it>Gsk3b</it>, <it>p53</it>, <it>Tip60</it>, and <it>Vglut2</it>. Only <it>Egfr </it>was slightly up-regulated in APLP2<sup>-/- </sup>mice. Comparison of APP<sup>-/- </sup>and APP<sup>Ī±/Ī± </sup>with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2<sup>-/- </sup>on different genetic backgrounds revealed that background-related transcriptome changes may dominate over changes due to the knockout of a single gene.</p> <p>Conclusion</p> <p>Shared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.</p
    corecore