10 research outputs found

    A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L.) syn Senna tora (L.) Roxb. seed extract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, <it>Cassia tora </it>(<it>Senna tora</it>) is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases.</p> <p>Methods</p> <p>The crushed seeds of <it>Cassia tora </it>were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90%) followed by dialysis and size exclusion chromatography (SEC). The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60%) and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD) and ANOVA were employed as statistical tools.</p> <p>Results</p> <p>The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P < 0.001). The inhibition of caseinolytic activity of the proteases increased with increasing ratio of seed extract. The residual activity of trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml<sup>-1 </sup>seed protein extract for 60 min. The inhibitory activity was evident in gelatin SDS-PAGE where a major band (~17-19 kD) of protease inhibitor (PI) was detected in dialyzed and SEC elute. The conidial germination of <it>Aspergillus flavus </it>was moderately inhibited (30%) by the dialyzed seed extract.</p> <p>Conclusions</p> <p><it>Cassia tora </it>seed extract has strong protease inhibitory activity against trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases. The inhibitor in <it>Cassia tora </it>may attenuate microbial proteases and also might be used as phytoprotecting agent.</p

    Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners

    No full text
    Marine ornamental fish are a key component of the multimillion‐dollar marine aquarium trade industry, a controversial industry due to current heavy reliance on wild‐collected specimens. Aquaculture of marine ornamental fish is considered as a sustainable alternative, but it is still in the early stage of development. This review focuses on the current state of marine ornamental fish aquaculture, by covering topics on reef fish reproductive biology in captivity, traditional and novel live feeds, feeding regimes and visual environment in larviculture. Where possible, major differences between demersal and pelagic spawners are compared and discussed. Overall, for many ornamental fish species, natural spawning can be achieved in a captive environment without the use of hormone induction; however, sex identification and successful pairing for reef fish species could be a challenge. With the use of both traditional (rotifers and Artemia) and novel live feeds (e.g. marine copepods and ciliates), a range of breakthroughs in larval rearing of both demersal and pelagic spawning ornamental fish species have been achieved in recent years, although larval survival varies. To further improve the larval rearing success of marine ornamental fish, this review suggests that future research should focus on optimizing the use of live feed in terms of both quality and quantity, and establishment of well‐defined species‐specific larval feeding regime, as well as providing appropriate rearing condition through improved manipulation of light conditions and the 'greenwater' techniques in larval rearing

    Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners

    No full text

    Polyoxoalkoxy Molybdenum and Vanadium Clusters

    No full text

    Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery—a review

    No full text

    Cellulose-based Li-ion batteries: a review

    No full text
    corecore