1,622 research outputs found
Vacuum Stability, Perturbativity, and Scalar Singlet Dark Matter
We analyze the one-loop vacuum stability and perturbativity bounds on a
singlet extension of the Standard Model (SM) scalar sector containing a scalar
dark matter candidate. We show that the presence of the singlet-doublet quartic
interaction relaxes the vacuum stability lower bound on the SM Higgs mass as a
function of the cutoff and lowers the corresponding upper bound based on
perturbativity considerations. We also find that vacuum stability requirements
may place a lower bound on the singlet dark matter mass for given singlet
quartic self coupling, leading to restrictions on the parameter space
consistent with the observed relic density. We argue that discovery of a light
singlet scalar dark matter particle could provide indirect information on the
singlet quartic self-coupling.Comment: 25 pages, 10 figures; v2 - fixed minor typos; v3 - added to text
discussions of other references, changed coloring of figures for easier black
and white viewin
Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability
The presence of right-handed neutrinos in the type I seesaw mechanism may
lead to significant corrections to the RG evolution of the Higgs self-coupling.
Compared to the Standard Model case, the Higgs mass window can become narrower,
and the cutoff scale become lower. Naively, these effects decrease with
decreasing right-handed neutrino mass. However, we point out that the unknown
Dirac Yukawa matrix may impact the vacuum stability constraints even in the low
scale seesaw case not far away from the electroweak scale, hence much below the
canonical seesaw scale of 10^15 GeV. This includes situations in which
production of right-handed neutrinos at colliders is possible. We illustrate
this within a particular parametrization of the Dirac Yukawas and with explicit
low scale seesaw models. We also note the effect of massive neutrinos on the
top quark Yukawa coupling, whose high energy value can be increased with
respect to the Standard Model case.Comment: 17 pages, 7 figures, minor revisions, version to appear in JHE
Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force
We discuss the ergodic properties of quasi-Markovian stochastic differential
equations, providing general conditions that ensure existence and uniqueness of
a smooth invariant distribution and exponential convergence of the evolution
operator in suitably weighted spaces, which implies the validity
of central limit theorem for the respective solution processes. The main new
result is an ergodicity condition for the generalized Langevin equation with
configuration-dependent noise and (non-)conservative force
Higgs mass and vacuum stability in the Standard Model at NNLO
We present the first complete next-to-next-to-leading order analysis of the
Standard Model Higgs potential. We computed the two-loop QCD and Yukawa
corrections to the relation between the Higgs quartic coupling (lambda) and the
Higgs mass (Mh), reducing the theoretical uncertainty in the determination of
the critical value of Mh for vacuum stability to 1 GeV. While lambda at the
Planck scale is remarkably close to zero, absolute stability of the Higgs
potential is excluded at 98% C.L. for Mh < 126 GeV. Possible consequences of
the near vanishing of lambda at the Planck scale, including speculations about
the role of the Higgs field during inflation, are discussed.Comment: 35 pages, 8 figures. Final published version, misprints fixed,
figures update
Climate change, precipitation and impacts on an estuarine refuge from disease
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e18849, doi:10.1371/journal.pone.0018849.Oysters play important roles in estuarine ecosystems but have suffered recently due to overfishing, pollution, and habitat loss. A tradeoff between growth rate and disease prevalence as a function of salinity makes the estuarine salinity transition of special concern for oyster survival and restoration. Estuarine salinity varies with discharge, so increases or decreases in precipitation with climate change may shift regions of low salinity and disease refuge away from optimal oyster bottom habitat, negatively impacting reproduction and survival. Temperature is an additional factor for oyster survival, and recent temperature increases have increased vulnerability to disease in higher salinity regions. We examined growth, reproduction, and survival of oysters in the New York Harbor-Hudson River region, focusing on a low-salinity refuge in the estuary. Observations were during two years when rainfall was above average and comparable to projected future increases in precipitation in the region and a past period of about 15 years with high precipitation. We found a clear tradeoff between oyster growth and vulnerability to disease. Oysters survived well when exposed to intermediate salinities during two summers (2008, 2010) with moderate discharge conditions. However, increased precipitation and discharge in 2009 reduced salinities in the region with suitable benthic habitat, greatly increasing oyster mortality. To evaluate the estuarine conditions over longer periods, we applied a numerical model of the Hudson to simulate salinities over the past century. Model results suggest that much of the region with suitable benthic habitat that historically had been a low salinity refuge region may be vulnerable to higher mortality under projected increases in precipitation and discharge. Predicted increases in precipitation in the northeastern United States due to climate change may lower salinities past important thresholds for oyster survival in estuarine regions with appropriate substrate, potentially disrupting metapopulation dynamics and impeding oyster restoration efforts, especially in the Hudson estuary where a large basin constitutes an excellent refuge from disease.Funding was provided by the Hudson River Foundation, grant number 00607A, and the New York State Department of Environmental Conservation (MOU 2008)
Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4 fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
- …