18 research outputs found

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Sex Determination in the Squalius alburnoides Complex: An Initial Characterization of Sex Cascade Elements in the Context of a Hybrid Polyploid Genome

    Get PDF
    BACKGROUND:Sex determination processes vary widely among different vertebrate taxa, but no group offers as much diversity for the study of the evolution of sex determination as teleost fish. However, the knowledge about sex determination gene cascades is scarce in this species-rich group and further difficulties arise when considering hybrid fish taxa, in which mechanisms exhibited by parental species are often disrupted. Even though hybridisation is frequent among teleosts, gene based approaches on sex determination have seldom been conducted in hybrid fish. The hybrid polyploid complex of Squalius alburnoides was used as a model to address this question. METHODOLOGY/PRINCIPAL FINDINGS:We have initiated the isolation and characterization of regulatory elements (dmrt1, wt1, dax1 and figla) potentially involved in sex determination in S. alburnoides and in the parental species S. pyrenaicus and analysed their expression patterns by in situ hybridisation. In adults, an overall conservation in the cellular localization of the gene transcripts was observed between the hybrids and parental species. Some novel features emerged, such as dmrt1 expression in adult ovaries, and the non-dimorphic expression of figla, an ovarian marker in other species, in gonads of both sexes in S. alburnoides and S. pyrenaicus. The potential contribution of each gene to the sex determination process was assessed based on the timing and location of expression. Dmrt1 and wt1 transcripts were found at early stages of male development in S. alburnoides and are most likely implicated in the process of gonad development. CONCLUSIONS/SIGNIFICANCE:For the first time in the study of this hybrid complex, it was possible to directly compare the gene expression patterns between the bisexual parental species and the various hybrid forms, for an extended set of genes. The contribution of these genes to gonad integrity maintenance and functionality is apparently unaltered in the hybrids, suggesting that no abrupt shifts in gene expression occurred as a result of hybridisation

    Learning to live together: mutualism between self-splicing introns and their hosts

    Get PDF
    Group I and II introns can be considered as molecular parasites that interrupt protein-coding and structural RNA genes in all domains of life. They function as self-splicing ribozymes and thereby limit the phenotypic costs associated with disruption of a host gene while they act as mobile DNA elements to promote their spread within and between genomes. Once considered purely selfish DNA elements, they now seem, in the light of recent work on the molecular mechanisms regulating bacterial and phage group I and II intron dynamics, to show evidence of co-evolution with their hosts. These previously underappreciated relationships serve the co-evolving entities particularly well in times of environmental stress
    corecore