9 research outputs found

    Methods to Quantify Nanomaterial Association with, and Distribution across, the Blood-Brain Barrier in Vivo

    Get PDF
    The role and functional anatomy of the blood-brain barrier (BBB) is summarized to enable the investigator to appropriately address evaluation of nanomaterial interaction with, and distribution across, it into brain tissue (parenchyma). Transport mechanisms across the BBB are presented, in relation to nanomaterial physicochemical properties. Measures and test substances to assess BBB integrity/disruption/permeation are introduced, along with how they are used to interpret the results obtained with the presented methods. Experimental pitfalls and misinterpretation of results of studies of brain nanomaterial uptake are briefly summarized, that can be avoided with the methods presented in this chapter. Two methods are presented. The in situ brain perfusion technique is used to determine rate and extent of nanomaterial distribution into the brain. The capillary depletion method separates brain parenchymal tissue from the endothelial cells that contribute to the BBB. It is used to verify nanomaterial brain tissue entry. These methods are best used together, the latter refining the results obtained with the former. Details of the materials and equipment needed to conduct these methods, and description of the procedures and data interpretation, are provided

    Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems

    No full text
    Research in the field of nano-neuroscience is becoming a promising future direction given the advantages presented by nanosystems for central nervous system (CNS) drug delivery. Since the blood–brain barrier (BBB) represents an invincible obstacle for the majority of drugs such as antineoplastic agents and a variety of psychoactive drugs such as neuropeptides, “smart” CNS drug delivery systems with high ability to deliver substances across the BBB are highly desired and will not only enable drugs to reach the CNS but also target specific areas of the CNS. Thus, injectable biodegradable nanoparticles have an important potential application in the treatment of a variety of neurological and psychiatric disorders. Therefore, in the following, we will highlight the requirement and importance of CNS drug delivery systems with particular emphasis on nano-scale systems. It is the objective of this article to offer a perspective on the complexity and challenges in fabrication of nanostructures, in vivo nano–bio interactions and also to highlight some of the most used nanosystems for drug delivery into the CNS
    corecore