794 research outputs found
Comparison of Hospital Costs and Length of Stay for Community Internists, Hospitalists, and Academicians
BACKGROUND: The model of inpatient medical management has evolved toward Hospitalists because of greater cost efficiency compared to traditional practice. The optimal model of inpatient care is not known. OBJECTIVE: To compare three models of inpatient Internal Medicine (traditional private practice Internists, private Hospitalist Internists, and Academic Internists with resident teams) for cost efficiency and quality at a community teaching hospital. DESIGN: Single-institution retrospective cohort study. MEASUREMENTS AND MAIN RESULTS: Measurements were hospital cost, length of stay (LOS), mortality, and 30-day readmission rate adjusted for severity, demographics, and case mix. Academic Internist teams had 30% lower cost and 40% lower LOS compared to traditional private Internists and 24% lower cost and 30% lower LOS compared to private Hospitalists. Hospital mortality was equivalent for all groups. Academic teams had 2.3–2.6% more 30-day readmissions than the other groups. CONCLUSIONS: Academic teams compare favorably to private Hospitalists and traditional Internists for hospital cost efficiency and quality
Some remarks on a new exotic spacetime for time travel by free fall
This work is essentially a review of a new spacetime model with closed causal
curves, recently presented in another paper (Class. Quantum Grav.
\textbf{35}(16) (2018), 165003). The spacetime at issue is topologically
trivial, free of curvature singularities, and even time and space orientable.
Besides summarizing previous results on causal geodesics, tidal accelerations
and violations of the energy conditions, here redshift/blueshift effects and
the Hawking-Ellis classification of the stress-energy tensor are examined.Comment: 17 pages, 9 figures. Submitted as a contribution to the proceedings
of "DOMOSCHOOL - International Alpine School of Mathematics and Physics,
Domodossola 2018". Possible text overlaps with my previous work
arXiv:1803.08214, of which this is essentially a review. Additional results
concerning redshift/blueshift effects and the classification of the
stress-energy tensor are presented her
Graphene Bilayer Field-Effect Phototransistor for Terahertz and Infrared Detection
A graphene bilayer phototransistor (GBL-PT) is proposed and analyzed. The
GBL-PT under consideration has the structure of a field-effect transistor with
a GBL as the channel and the back and top gates. The positive bias of the back
gate results in the formation of conducting source and drain sections in the
channel, while the negatively biased top gate provides the potential barrier
which is controlled by the charge of the photogenerated holes. The features of
the GBL-PT operation are associated with the variations of both the potential
distribution and the energy gap in different sections of the channel when the
gate voltages and the charge in the barrier section change. Using the developed
GBL-PT device model, the spectral characteristics, dark current, responsivity
and detectivity are calculated as functions of the applied voltages, energy of
incident photons, intensity of electron and hole scattering, and geometrical
parameters. It is shown that the GBL-PT spectral characteristics are voltage
tuned. The GBL-PT performance as photodetector in the terahertz and infrared
photodetectors can markedly exceed the performance of other photodetectors.Comment: 7 Pages, 7 figure
Uncovering the overlapping community structure of complex networks in nature and society
Many complex systems in nature and society can be described in terms of
networks capturing the intricate web of connections among the units they are
made of. A key question is how to interpret the global organization of such
networks as the coexistence of their structural subunits (communities)
associated with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins, industrial
sectors and groups of people) is crucial to the understanding of the structural
and functional properties of networks. The existing deterministic methods used
for large networks find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of nodes. Here we
introduce an approach to analysing the main statistical features of the
interwoven sets of overlapping communities that makes a step towards uncovering
the modular structure of complex systems. After defining a set of new
characteristic quantities for the statistics of communities, we apply an
efficient technique for exploring overlapping communities on a large scale. We
find that overlaps are significant, and the distributions we introduce reveal
universal features of networks. Our studies of collaboration, word-association
and protein interaction graphs show that the web of communities has non-trivial
correlations and specific scaling properties.Comment: The free academic research software, CFinder, used for the
publication is available at the website of the publication:
http://angel.elte.hu/clusterin
The magnetic nature of disk accretion onto black holes
Although disk accretion onto compact objects - white dwarfs, neutron stars,
and black holes - is central to much of high energy astrophysics, the
mechanisms which enable this process have remained observationally elusive.
Accretion disks must transfer angular momentum for matter to travel radially
inward onto the compact object. Internal viscosity from magnetic processes and
disk winds can in principle both transfer angular momentum, but hitherto we
lacked evidence that either occurs. Here we report that an X-ray-absorbing wind
discovered in an observation of the stellar-mass black hole binary GRO J1655-40
must be powered by a magnetic process that can also drive accretion through the
disk. Detailed spectral analysis and modeling of the wind shows that it can
only be powered by pressure generated by magnetic viscosity internal to the
disk or magnetocentrifugal forces. This result demonstrates that disk accretion
onto black holes is a fundamentally magnetic process.Comment: 15 pages, 2 color figures, accepted for publication in Nature.
Supplemental materials may be obtained by clicking
http://www.astro.lsa.umich.edu/~jonmm/nature1655.p
Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes
Whether all the infectious herpesvirus particles entering a cell are able to replicate and/or express their genomes is not known. Here, we developed a general method to determine the number of viral genomes expressed in an infected cell. We constructed and analysed fluorophore expression from a recombinant pseudorabies virus (PRV263) carrying a Brainbow cassette (Cre-conditional expression of different fluorophores). Using three isogenic strains derived from PRV263, each expressing a single fluorophore, we analysed the colour composition of cells infected with these three viruses at different multiplicities. We estimate that fewer than seven incoming genomes are expressed per cell. In addition, those templates that are expressed are the genomes selected for replication and packaging into virions. This finite limit on the number of viral genomes that can be expressed is an intrinsic property of the infected cell and may be influenced by viral and cellular factors
Spin polarization versus lifetime effects at point contacts between superconducting niobium and normal metals
Point-contact Andreev reflection spectroscopy is used to measure the spin
polarization of metals but analysis of the spectra has encountered a number of
serious challenges, one of which is the difficulty to distinguish the effects
of spin polarization from those of the finite lifetime of Cooper pairs. We have
recently confirmed the polarization-lifetime ambiguity for Nb-Co and Nb-Cu
contacts and suggested to use Fermi surface mismatch, the normal reflection due
to the difference of Fermi wave vectors of the two electrodes, to solve this
dilemma. Here we present further experiments on contacts between
superconducting Nb and the ferromagnets Fe and Ni as well as the noble metals
Ag and Pt that support our previous results. Our data indicate that the Nb -
normal metal interfaces have a transparency of up to about 80 per cent and a
small, if not negligible, spin polarization.Comment: 7 pages, 2 figures, submitted to Proceedings of the 26th Conference
on Low Temperature Physic
Genome-Wide Screen of Three Herpesviruses for Protein Subcellular Localization and Alteration of PML Nuclear Bodies
Herpesviruses are large, ubiquitous DNA viruses with complex host interactions, yet many of the proteins encoded by these viruses have not been functionally characterized. As a first step in functional characterization, we determined the subcellular localization of 234 epitope-tagged proteins from herpes simplex virus, cytomegalovirus, and Epstein–Barr virus. Twenty-four of the 93 proteins with nuclear localization formed subnuclear structures. Twelve of these localized to the nucleolus, and five at least partially localized with promyelocytic leukemia (PML) bodies, which are known to suppress viral lytic infection. In addition, two proteins disrupted Cajal bodies, and 19 of the nuclear proteins significantly decreased the number of PML bodies per cell, including six that were shown to be SUMO-modified. These results have provided the first functional insights into over 120 previously unstudied proteins and suggest that herpesviruses employ multiple strategies for manipulating nuclear bodies that control key cellular processes
Resolving the infinitude controversy
A simple inductive argument shows natural languages to have infinitly many sentences, but workers in the field have uncovered clear evidence of a diverse group of ‘exceptional’ languages from Proto-Uralic to Dyirbal and most recently, Pirahã, that appear to lack recursive devices entirely. We argue that in an information-theoretic setting non-recursive natural languages appear neither exceptional nor functionally inferior to the recursive majority
- …