4,351 research outputs found
Heat-Shock Proteins Of The Oyster Parasite Perkinsus-marinus
The susceptibility of the eastern oyster Crassostrea virginica to infection by the protozoan parasite Perkinsus marinus is influenced by temperature. Because of the crucial roles of heat shock proteins in cellular thermal tolerance and in host-parasite adaptations in other species, we compared the in vitro heat shock responses of cultured P. marin us and of oyster hemocytes. The parasite and host heat shock proteins were different in size and in immunochemical specificity. In addition, the thermal threshold for inducing the response was higher for P. marinus acclimated to the same temperature as the oysters. The results suggest that EI marinus is likely to employ heat shock proteins as part of its adaptive survival repertoire and that it may be able to function normally under conditions of hyperthermia that evoke an emergency physiological response from the oyster defense cells. Furthermore, they indicate that it is feasible to investigate the host\u27s and parasite\u27s adaptive responses to each other, since their individual responses are readily distinguishable
Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides
The in-plane anisotropy of the electrical resistivity across the coupled
orthorhombic and magnetic transitions of the iron pnictides has been
extensively studied in the parent and electron-doped compounds. All these
studies universally show that the resistivity across the long
orthorhombic axis - along which the spins couple antiferromagnetically
below the magnetic transition temperature - is smaller than the resistivity
of the short orthorhombic axis , i. e. .
Here we report that in the hole-doped compounds
BaKFeAs, as the doping level increases, the
resistivity anisotropy initially becomes vanishingly small, and eventually
changes sign for sufficiently large doping, i. e. . This
observation is in agreement with a recent theoretical prediction that considers
the anisotropic scattering of electrons by spin-fluctuations in the
orthorhombic/nematic state.Comment: This paper has been replaced by the new version offering new
explanation of the experimental results first reported her
Weight gain and dietary intake during pregnancy in industrialized countries - a systematic review of observational studies
Background: Gestational weight gain (GWG) above the recently recommended ranges is likely to be related to adverse pregnancy outcomes and therefore a challenge in industrialized countries. Aims: We conducted a systematic review on observational studies in order to gain more evidence on whether diets with lower caloric/protein content or other diets might be associated with lower GWG. Methods: We searched in MEDLINE and EMBASE for observational studies written in English or German reporting associations between diet and GWG in singleton pregnancies of healthy women in industrialized countries. Results: We identified 12 studies which met the inclusion criteria. Five studies suggested significant positive associations between energy intake and GWG, whereas three found no significant association. Further significant positive associations of GWG were reported with respect to protein intake, animal lipids, energy density and a number of different food servings per day, whereas intake of carbohydrates and vegetarian diet were associated with less GWG. Conclusions: We suggest that GWG might be reduced by lower energy intake in pregnancy
Lead Exposure Is Associated with Decreased Serum Paraoxonase 1 (PON1) Activity and Genotypes
Lead exposure causes cardiac and vascular damage in experimental animals. However, there is considerable debate regarding the causal relationship between lead exposure and cardiovascular dysfunction in humans. Paraoxonase 1 (PON1), a high-density lipoprotein-associated antioxidant enzyme, is capable of hydrolyzing oxidized lipids and thus protects against atherosclerosis. Previous studies have shown that lead and several other metal ions are able to inhibit PON1 activity in vitro. To investigate whether lead exposure has influence on serum PON1 activity, we conducted a cross-sectional study of workers from a lead battery manufactory and lead recycling plant. Blood samples were analyzed for whole-blood lead levels, serum PON1 activity, and three common PON1 polymorphisms (Q192R, L55M, −108C/T). The mean blood lead level (± SD) of this cohort was 27.1 ± 15 μg/dL. Multiple linear regression analysis showed that blood lead levels were significantly associated with decreased serum PON1 activity (p < 0.001) in lead workers. This negative correlation was more evident for workers who carry the R192 allele, which has been suggested to be a risk factor for coronary heart disease. Taken together, our results suggest that the decrease in serum PON1 activity due to lead exposure may render individuals more susceptible to atherosclerosis, particularly subjects who are homozygous for the R192 allele
Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells
Chronic myeloid leukaemia (CML) is maintained by a rare population of tyrosine kinase inhibitor (TKI)-insensitive malignant stem cells. Our long-term aim is to find a BcrAbl-independent drug that can be combined with a TKI to improve overall disease response in chronic-phase CML. Omacetaxine mepesuccinate, a first in class cetaxine, has been evaluated by clinical trials in TKI-insensitive/resistant CML. Omacetaxine inhibits synthesis of anti-apoptotic proteins of the Bcl-2 family, including (myeloid cell leukaemia) Mcl-1, leading to cell death. Omacetaxine effectively induced apoptosis in primary CML stem cells (CD34<sup>+</sup>38<sup>lo</sup>) by downregulation of Mcl-1 protein. In contrast to our previous findings with TKIs, omacetaxine did not accumulate undivided cells <i>in vitro</i>. Furthermore, the functionality of surviving stem cells following omacetaxine exposure was significantly reduced in a dose-dependant manner, as determined by colony forming cell and the more stringent long-term culture initiating cell colony assays. This stem cell-directed activity was not limited to CML stem cells as both normal and non-CML CD34<sup>+</sup> cells were sensitive to inhibition. Thus, although omacetaxine is not leukaemia stem cell specific, its ability to induce apoptosis of leukaemic stem cells distinguishes it from TKIs and creates the potential for a curative strategy for persistent disease
Anisotropic Impurity-States, Quasiparticle Scattering and Nematic Transport in Underdoped Ca(Fe1-xCox)2As2
Iron-based high temperature superconductivity develops when the `parent'
antiferromagnetic/orthorhombic phase is suppressed, typically by introduction
of dopant atoms. But their impact on atomic-scale electronic structure, while
in theory quite complex, is unknown experimentally. What is known is that a
strong transport anisotropy with its resistivity maximum along the crystal
b-axis, develops with increasing concentration of dopant atoms; this
`nematicity' vanishes when the `parent' phase disappears near the maximum
superconducting Tc. The interplay between the electronic structure surrounding
each dopant atom, quasiparticle scattering therefrom, and the transport
nematicity has therefore become a pivotal focus of research into these
materials. Here, by directly visualizing the atomic-scale electronic structure,
we show that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2
generates a dense population of identical anisotropic impurity states. Each is
~8 Fe-Fe unit cells in length, and all are distributed randomly but aligned
with the antiferromagnetic a-axis. By imaging their surrounding interference
patterns, we further demonstrate that these impurity states scatter
quasiparticles in a highly anisotropic manner, with the maximum scattering rate
concentrated along the b-axis. These data provide direct support for the recent
proposals that it is primarily anisotropic scattering by dopant-induced
impurity states that generates the transport nematicity; they also yield simple
explanations for the enhancement of the nematicity proportional to the dopant
density and for the occurrence of the highest resistivity along the b-axis
Security Analysis of Sensor Networks
Wireless sensor networks distribute a common sensing and computing task within the large
number of participants that use wireless communication. Such networks require a
self-organizing and energy-aware set of protocols. Several protocols have beed designed
for such environments, however to make certain proof of their secureness, their formal analysis is required.
In our article, we show an analysis framework capable of proving security
properties of such protocols. Our methodology is based on the CSP process algebra.
We will demonstrate its power by giving an attack possibility for an existing protocol, and the extensibility of the model will also be pointed
Lifshitz spacetimes from AdS null and cosmological solutions
We describe solutions of 10-dimensional supergravity comprising null
deformations of with a scalar field, which have
Lifshitz symmetries. The bulk Lifshitz geometry in 3+1-dimensions arises by
dimensional reduction of these solutions. The dual field theory in this case is
a deformation of the N=4 super Yang-Mills theory. We discuss the holographic
2-point function of operators dual to bulk scalars. We further describe
time-dependent (cosmological) solutions which have anisotropic Lifshitz scaling
symmetries. We also discuss deformations of in 11-dimensional
supergravity, which are somewhat similar to the solutions above. In some cases
here, we expect the field theory duals to be deformations of the Chern-Simons
theories on M2-branes stacked at singularities.Comment: Latex, 29pgs, v3. references, minor clarifications (subsection on
Lifshitz geometry seen by scalar probes) added, to appear in JHE
- …