26 research outputs found
IAP Display: A Simple Method to Identify Mouse Strain Specific IAP Insertions
Intracisternal A-type particle (IAP) elements are high copy number long terminal repeat (LTR) rodent retrotransposons. Some IAP elements can transpose, and are responsible for ~12% of spontaneous mouse mutations. Inbred mouse strains show variation in genomic IAP distribution, contributing to inter-strain genetic variability. Additionally IAP elements can influence the transcriptional regulation of neighbouring genes through their strong LTR promoter, effecting phenotypic variation. This genetic and phenotypic variability can translate into experimental variability between mouse strains. For example, it has been demonstrated that strain-specific genetic/epigenetic factors can interact to yield variable responses to drugs. Therefore, in experimental contexts it is essential to unequivocally identify mouse strains. Recently it was estimated that any two inbred strains share only ~40% of their IAP insertions. Of the remaining 60%, some insertions will be strain specific, fixed during inbreeding. These fixed insertions can be exploited as genetic markers to identify inbred strains, if they can be identified simply and efficiently. Here, we report the development of a PCR-based system allowing direct acquisition of strain-specific IAP insertions. In a pilot study, we identified 21 IAP loci, genotyped IAP insertions at 9 loci, and discovered two strain-specific insertions that could reliably identify these strains
Failure of SOX9 Regulation in 46XY Disorders of Sex Development with SRY, SOX9 and SF1 Mutations
In human embryogenesis, loss of SRY (sex determining region on Y), SOX9 (SRY-related HMG box 9) or SF1 (steroidogenic factor 1) function causes disorders of sex development (DSD). A defining event of vertebrate sex determination is male-specific upregulation and maintenance of SOX9 expression in gonadal pre-Sertoli cells, which is preceded by transient SRY expression in mammals. In mice, Sox9 regulation is under the transcriptional control of SRY, SF1 and SOX9 via a conserved testis-specific enhancer of Sox9 (TES). Regulation of SOX9 in human sex determination is however poorly understood.We show that a human embryonal carcinoma cell line (NT2/D1) can model events in presumptive Sertoli cells that initiate human sex determination. SRY associates with transcriptionally active chromatin in NT2/D1 cells and over-expression increases endogenous SOX9 expression. SRY and SF1 co-operate to activate the human SOX9 homologous TES (hTES), a process dependent on phosphorylated SF1. SOX9 also activates hTES, augmented by SF1, suggesting a mechanism for maintenance of SOX9 expression by auto-regulation. Analysis of mutant SRY, SF1 and SOX9 proteins encoded by thirteen separate 46,XY DSD gonadal dysgenesis individuals reveals a reduced ability to activate hTES.We demonstrate how three human sex-determining factors are likely to function during gonadal development around SOX9 as a hub gene, with different genetic causes of 46,XY DSD due a common failure to upregulate SOX9 transcription
Hypomethylation of Intragenic LINE-1 Represses Transcription in Cancer Cells through AGO2
In human cancers, the methylation of long interspersed nuclear element -1 (LINE-1
or L1) retrotransposons is reduced. This occurs within the context of genome
wide hypomethylation, and although it is common, its role is poorly understood.
L1s are widely distributed both inside and outside of genes, intragenic and
intergenic, respectively. Interestingly, the insertion of active full-length L1
sequences into host gene introns disrupts gene expression. Here, we evaluated if
intragenic L1 hypomethylation influences their host gene expression in cancer.
First, we extracted data from L1base (http://l1base.molgen.mpg.de), a database containing putatively
active L1 insertions, and compared intragenic and intergenic L1 characters. We
found that intragenic L1 sequences have been conserved across evolutionary time
with respect to transcriptional activity and CpG dinucleotide sites for
mammalian DNA methylation. Then, we compared regulated mRNA levels of cells from
two different experiments available from Gene Expression Omnibus (GEO), a
database repository of high throughput gene expression data, (http://www.ncbi.nlm.nih.gov/geo) by chi-square. The odds ratio
of down-regulated genes between demethylated normal bronchial epithelium and
lung cancer was high (p<1Eβ27;
ORβ=β3.14; 95%
CIβ=β2.54β3.88), suggesting cancer genome wide
hypomethylation down-regulating gene expression. Comprehensive analysis between
L1 locations and gene expression showed that expression of genes containing L1s
had a significantly higher likelihood to be repressed in cancer and
hypomethylated normal cells. In contrast, many mRNAs derived from genes
containing L1s are elevated in Argonaute 2 (AGO2 or EIF2C2)-depleted cells.
Hypomethylated L1s increase L1 mRNA levels. Finally, we found that AGO2 targets
intronic L1 pre-mRNA complexes and represses cancer genes. These findings
represent one of the mechanisms of cancer genome wide hypomethylation altering
gene expression. Hypomethylated intragenic L1s are a nuclear siRNA mediated
cis-regulatory element that can repress genes. This
epigenetic regulation of retrotransposons likely influences many aspects of
genomic biology
Mammalian sex determinationβinsights from humans and mice
Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models