9 research outputs found
Prospects for Constraining Cosmology with the Extragalactic Cosmic Microwave Background Temperature
Observers have demonstrated that it is now feasible to measure the cosmic
microwave background (CMB) temperature at high redshifts. We explore the
possible constraints on cosmology which might ultimately be derived from such
measurements. Besides providing a consistency check on standard and alternative
cosmologies, possibilities include: constraints on the inhomogeneity and
anisotropy of the universe at intermediate redshift ; an
independent probe of peculiar motions with respect to the Hubble flow; and
constraining the epoch of reionization. We argue that the best possibility is
as a probe of peculiar motions. We show, however, that the current measurement
uncertainty (K) in the local present absolute CMB
temperature imposes intrinsic limits on the use of such CMB temperature
measurements as a cosmological probe. At best, anisotropies at intermediate
redshift could only be constrained at a level of and peculiar
motions could only be determined to an uncertainty of km
s. If the high CMB temperature can only be measured with a precision
comparable to the uncertainty of the local interstellar CMB temperature, then
peculiar motions could be determined to an uncertainty of .Comment: 8 pages 2 Figures, PRD Submitte
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
Counterrotation in Galaxies
The phenomenon of counterrotation is observed when two galaxy component