86 research outputs found
Crystal Growth of Thiol-Stabilized Gold Nanoparticles by Heat-Induced Coalescence
A monolayer of dodecanethiol-stabilized gold nanoparticles changed into two-dimensional and three-dimensional self-organized structures by annealing at 323 K. Subsequent crystal growth of gold nanoparticles occurred. Thiol molecules, although chemisorbed, form relatively unstable bonds with the gold surface; a few thiols desorbed from the surface and oxidized to disulfides at 323 K, because the interaction energy between thiol macromolecules is larger than that between a thiol and a nanoparticle. The gold nanoparticles approached each other and grew into large single or twinned crystals because of the van der Waals attraction and the heat generated by the exothermic formation of disulfides
The theory of expanded, extended, and enhanced opportunities for youth physical activity promotion
Background Physical activity interventions targeting children and adolescents (≤18 years) often focus on complex intra- and inter-personal behavioral constructs, social-ecological frameworks, or some combination of both. Recently published meta-analytical reviews and large-scale randomized controlled trials have demonstrated that these intervention approaches have largely produced minimal or no improvements in young people\u27s physical activity levels.
Discussion In this paper, we propose that the main reason for previous studies\u27 limited effects is that fundamental mechanisms that lead to change in youth physical activity have often been overlooked or misunderstood. Evidence from observational and experimental studies is presented to support the development of a new theory positing that the primary mechanisms of change in many youth physical activity interventions are approaches that fall into one of the following three categories: (a) the expansion of opportunities for youth to be active by the inclusion of a new occasion to be active, (b) the extension of an existing physical activity opportunity by increasing the amount of time allocated for that opportunity, and/or (c) the enhancement of existing physical activity opportunities through strategies designed to increase physical activity above routine practice. Their application and considerations for intervention design and interpretation are presented.
Summary The utility of these mechanisms, referred to as the Theory of Expanded, Extended, and Enhanced Opportunities (TEO), is demonstrated in their parsimony, logical appeal, support with empirical evidence, and the direct and immediate application to numerous settings and contexts. The TEO offers a new way to understand youth physical activity behaviors and provides a common taxonomy by which interventionists can identify appropriate targets for interventions across different settings and contexts. We believe the formalization of the TEO concepts will propel them to the forefront in the design of future intervention studies and through their use, lead to a greater impact on youth activity behaviors than what has been demonstrated in previous studies
CONFIRMATION OF A VANISHINGLY SMALL RING-CURRENT MAGNETIC-SUSCEPTIBILITY OF ICOSAHEDRAL C-60
In 1987, Elser and Haddon predicted a vanishingly small pi-electron contribution to the magnetic susceptibility of the icosahedral C60 molecule (buckminsterfullerene). This result runs counter to intuition and was subsequently disputed on the basis of ab initio computations. Following the recent discovery of methods for preparing (and purifying) large quantities of C60, we here report measurements of the magnetic susceptibility, chi, of a solid sample of pure C60 by SQUID magnetometry. The obtained mass value, chi-g = -0.35 x 10(-6), is far below that of graphite or benzene, consistent with the Elser-Haddon picture of accidental cancellation of the diamagnetic and paramagnetic contributions to chi. An estimate of the unusually large paramagnetic contribution is in accord with recent measurements of C60's electronic excitations. The C70 molecule is also measured to have chi-g = -(0.59 +/- 0.05) x 10(-6)
Reversible size control of silver nanoclusters via ligand-exchange
The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another, a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG = glutathionate] and Ag44(4-FTP)30 [4-FTP = 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (<5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs' interconvertibility. The model's predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. On the basis of the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes
Reversible size control of silver nanoclusters via ligand-exchange
The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another, a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG = glutathionate] and Ag44(4-FTP)30 [4-FTP = 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (<5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs' interconvertibility. The model's predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. On the basis of the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes
- …