613 research outputs found

    Applying a new version of the Brazilian-Portuguese UPSIT smell test in Brazil

    Get PDF
    Standardized olfactory tests are now available to quantitatively assess disorders of olfaction. A Brazilian-Portuguese version of the University of Pennsylvania Smell Identification Test (UPSIT) is currently being developed specifically for the Brazilian population. The most recent Brazilian-Portuguese version of the UPSIT (UPSIT-Br2) was administered to 88 Brazilian subjects who had no history of neurological or otorhinolaryngological disease. UPSIT-Br2 scores decreased with age, were lower in men than in women, and were lower in subjects with lower income. The degree to which the poorer performance of subjects with lower socio-economic status reflects lack of familiarity with test items is not known. Although this version of the UPSIT provides a sensitive and useful test of smell function for the Brazilian population, a revision of some test items is needed to achieve comparable norms to those found using the North American UPSIT in the United States

    Strategies to mitigate the emission of methane in pastures: Enteric methane: A review

    Get PDF
    The global population reached 7.9 billion in 2021, which represents a 160% increase in the number of people to be fed since 1960. Agricultural systems must sustainably meet food demand for this growing population while minimizing or mitigating potential environmental impacts, which are of growing concern to both consumers and the scientific community. High protein animal products (meat and milk) play a crucial part in human nutrition and pastures represent ~20% of the planet’s surface. Pastoral areas have a great influence on both ecological balance and human subsistence. Ruminant livestock production systems are hotly debated because of the emission of methane, which is produced during enteric fermentation of ingested food within the rumen. Methanogenesis is a naturally occurring process in the digestive system of ruminant animals and ingesting a high-quality diet has been shown to reduce methane production. An additional function of pastoral grasslands is the capacity of the soils to operate as carbon sinks. Well managed pastures absorb carbon from the atmosphere where it can add to soil organic matter directly, through residue decomposition or excrement returns. However, in Brazil and globally, the efficiency of animal productivity tends to be lower in extensively grazed farming systems. Changes to pasture and grazing management in combination with the adoption of technology is necessary to improve the quality of pastures, increase animal productivity, and consequently reduce methane emissions from ruminant livestock. This review will discuss how to improve the conversion efficiency using pasture management to reduce or mitigate enteric methane production

    Multivariate analysis reveals genetic diversity in Paspalum notatum FlĂĽgge

    Get PDF
    The objective of this study was to evaluate 94 Paspalum notatum genotypes over two growing seasons to estimate genetic dissimilarity through agronomic traits and the distance between genotypes. This information is used to create an ideotype from the best averages obtained for the set of characteristics evaluated. Seven apomitic, three sexual, and 81 hybrid genotypes were compared with native genotypes “André da Rocha”, “Bagual”, and cultivar “Pensacola” as controls. There is genetic variability in P. notatum for the studied characteristics, and distinct genotypes with superior characteristics can be used in new combinations between apomictic and sexual plants to obtain hybrids. The characters with the greatest relative contribution to the dissimilarity between the genotypes were tiller density, stem dry mass, and leaf dry mass yield. Thus, these characteristics are suitable criteria to infer genetic distance studies in P. notatum. The selection index based on the ideotype is an auxiliary tool in the breeding process. The ideotype must be based on characteristics of interest according to the objective of the breeding program, as well as on the breeder’s prior knowledge in relation to culture

    Characterization and genetic diversity in Paspalum notatum FlĂĽgge accessions: Morphological and geographical distance

    Get PDF
    The objective of this work was to describe morphology and grouping of Paspalum notatum accessions, based on multicategorical data which discards the redundant variables for quantification of genetic diversity. We also tested the hypothesis that geographical distance was correlated with morphological divergence. In our study, multivariate analyzes successfully demonstrated the geographic and morphological variability of the P. notatum accessions characterized. Many of these evaluated accessions can be included in future genetic improvement programs. Based on two methodologies for discarding variables, it was possible to identify the potentially important morphological characteristics from genetic diversity studies and characterize new accessions aimed at improving forage and seed production. The methodologies used to discard variables are biometric tools that can be used successfully in future plant breeding programs, especially when a large number of traits and accessions are being evaluated. Although significant, geographic distance had a low association with morphological traits. This indicated the need to use other characteristics, such as forage and seed yield, in addition to molecular analysis. Our analyzes showed genetic variability in P. notatum for all the characteristics studied

    Genetic parameters, prediction of gains and intraspecific hybrid selection of Paspalum notatum FlĂĽgge for forage using REML/BLUP

    Get PDF
    Genetic improvement of native forage species is a sustainable alternative for maximizing livestock production. Paspalum notatum FlĂĽgge is the most important forage grass in the native grasslands of southern Brazil, with substantial potential available for further genetic improvement. The objective of this study was to quantify a range of genetic parameters and predict yield gains in a population of P. notatum intraspecific hybrids. Results indicated intraspecific hybrids of P. notatum had high magnitudes of heritability in the broad and average sense of genotype, plus high selective accuracy and genetic variation for all forage characteristics evaluated. This indicated REML/BLUP can contribute useful information for plant selection in future plant breeding programs. The genetic material studied showed high genetic variability for forage production. Analysis indicated hybrids 336, 332, 437, 132 and male parent '30N' should be included in new crosses to increase the dry matter production of P. notatum. Parents need to be selected from different groups in order to maximize genetic variability and heterosis. In addition, these parents must be included in diallel crosses. The results obtained in this study provide important information for the future breeding of improved P. notatum cultivars for commercialization
    • …
    corecore