1,202 research outputs found

    Potential for airborne transmission of infection in the waiting areas of healthcare premises: stochastic analysis using a Monte Carlo model

    Get PDF
    BACKGROUND: Although many infections that are transmissible from person to person are acquired through direct contact between individuals, a minority, notably pulmonary tuberculosis (TB), measles and influenza are known to be spread by the airborne route. Airborne infections pose a particular threat to susceptible individuals whenever they are placed together with the index case in confined spaces. With this in mind, waiting areas of healthcare facilities present a particular challenge, since large numbers of people, some of whom may have underlying conditions which predispose them to infection, congregate in such spaces and can be exposed to an individual who may be shedding potentially pathogenic microorganisms. It is therefore important to understand the risks posed by infectious individuals in waiting areas, so that interventions can be developed to minimise the spread of airborne infections. METHOD: A stochastic Monte Carlo model was constructed to analyse the transmission of airborne infection in a hypothetical 132 m3 hospital waiting area in which occupancy levels, waiting times and ventilation rate can all be varied. In the model the Gammaitoni-Nucci equation was utilized to predict probability of susceptible individuals becoming infected. The model was used to assess the risk of transmission of three infectious diseases, TB, influenza and measles. In order to allow for stochasticity a random number generator was applied to the variables in the model and a total of 10000 individual simulations were undertaken. The mean quanta production rates used in the study were 12.7, 100 and 570 per hour for TB, influenza and measles, respectively. RESULTS: The results of the study revealed the mean probability of acquiring a TB infection during a 30-minute stay in the waiting area to be negligible (i.e. 0.0034), while that for influenza was an order of magnitude higher at 0.0262. By comparison the mean probability of acquiring a measles infection during the same period was 0.1349. If the duration of the stay was increased to 60 minutes then these values increased to 0.0087, 0.0662 and 0.3094, respectively. CONCLUSION: Under normal circumstances the risk of acquiring a TB infection during a visit to a hospital waiting area is minimal. Likewise the risks associated with the transmission of influenza, although an order of magnitude greater than those for TB, are relatively small. By comparison, the risks associated with measles are high. While the installation of air disinfection may be beneficial, when seeking to prevent the transmission of airborne viral infection it is important to first minimize waiting times and the number of susceptible individuals present before turning to expensive technological solutions

    Altruism can proliferate through group/kin selection despite high random gene flow

    Get PDF
    The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism can spread when rare under realistic group sizes and levels of migration. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton's rule for the spread of altruistic alleles, applicable under broad conditions.Comment: 5 pages, 2 figures. Supplementary material with 50 pages and 26 figure

    International criteria for acute kidney injury: advantages and remaining challenges

    Get PDF
    • Acute Kidney Injury (AKI) is defined using widely accepted international criteria that are based on changes in serum creatinine concentration and degree of oliguria. • AKI, when defined in this way, has a strong association with poor patient outcomes, including high mortality rates and longer hospital admissions with increased resource utilisation and subsequent chronic kidney disease. • The detection of AKI using current criteria can assist with AKI diagnosis and stratification of individual patient risk. • The diagnosis of AKI requires clinical judgement to integrate the definition of AKI with the clinical situation, to determine underlying cause of AKI, and to take account of factors that may affect performance of current definitions

    A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II

    Get PDF
    During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning

    Principles of Glomerular Organization in the Human Olfactory Bulb – Implications for Odor Processing

    Get PDF
    Olfactory sensory neurons (OSN) in mice express only 1 of a possible 1,100 odor receptors (OR) and axons from OSNs expressing the same odor receptor converge into ∼2 of the 1,800 glomeruli in each olfactory bulb (OB) in mice; this yields a convergence ratio that approximates 2∶1, 2 glomeruli/OR. Because humans express only 350 intact ORs, we examined human OBs to determine if the glomerular convergence ratio of 2∶1 established in mice was applicable to humans. Unexpectedly, the average number of human OB glomeruli is >5,500 yielding a convergence ratio of ∼16∶1. The data suggest that the initial coding of odor information in the human OB may differ from the models developed for rodents and that recruitment of additional glomeruli for subpopulations of ORs may contribute to more robust odor representation

    How to Get the Most out of Your Curation Effort

    Get PDF
    Large-scale annotation efforts typically involve several experts who may disagree with each other. We propose an approach for modeling disagreements among experts that allows providing each annotation with a confidence value (i.e., the posterior probability that it is correct). Our approach allows computing certainty-level for individual annotations, given annotator-specific parameters estimated from data. We developed two probabilistic models for performing this analysis, compared these models using computer simulation, and tested each model's actual performance, based on a large data set generated by human annotators specifically for this study. We show that even in the worst-case scenario, when all annotators disagree, our approach allows us to significantly increase the probability of choosing the correct annotation. Along with this publication we make publicly available a corpus of 10,000 sentences annotated according to several cardinal dimensions that we have introduced in earlier work. The 10,000 sentences were all 3-fold annotated by a group of eight experts, while a 1,000-sentence subset was further 5-fold annotated by five new experts. While the presented data represent a specialized curation task, our modeling approach is general; most data annotation studies could benefit from our methodology

    On the Perception of Newcomers: Toward an Evolved Psychology of Intergenerational Coalitions

    Get PDF
    Human coalitions frequently persist through multiple, overlapping membership generations, requiring new members to cooperate and coordinate with veteran members. Does the mind contain psychological adaptations for interacting within these intergenerational coalitions? In this paper, we examine whether the mind spontaneously treats newcomers as a motivationally privileged category. Newcomers—though capable of benefiting coalitions—may also impose considerable costs (e.g., they may free ride on other members, they may be poor at completing group tasks). In three experiments we show (1) that the mind categorizes coalition members by tenure, including newcomers; (2) that tenure categorization persists in the presence of orthogonal and salient social dimensions; and (3) that newcomers elicit a pattern of impressions consistent with their probable ancestral costs. These results provide preliminary evidence for a specialized component of human coalitional psychology: an evolved concept of newcomer

    The Re-Emergence of H1N1 Influenza Virus in 1977: A Cautionary Tale for Estimating Divergence Times Using Biologically Unrealistic Sampling Dates

    Get PDF
    In 1977, H1N1 influenza A virus reappeared after a 20-year absence. Genetic analysis indicated that this strain was missing decades of nucleotide sequence evolution, suggesting an accidental release of a frozen laboratory strain into the general population. Recently, this strain and its descendants were included in an analysis attempting to date the origin of pandemic influenza virus without accounting for the missing decades of evolution. Here, we investigated the effect of using viral isolates with biologically unrealistic sampling dates on estimates of divergence dates. Not accounting for missing sequence evolution produced biased results and increased the variance of date estimates of the most recent common ancestor of the re-emergent lineages and across the entire phylogeny. Reanalysis of the H1N1 sequences excluding isolates with unrealistic sampling dates indicates that the 1977 re-emergent lineage was circulating for approximately one year before detection, making it difficult to determine the geographic source of reintroduction. We suggest that a new method is needed to account for viral isolates with unrealistic sampling dates

    P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5.

    Get PDF
    Invasion of erythrocytes by Plasmodium falciparum merozoites is necessary for malaria pathogenesis and is therefore a primary target for vaccine development. RH5 is a leading subunit vaccine candidate because anti-RH5 antibodies inhibit parasite growth and the interaction with its erythrocyte receptor basigin is essential for invasion. RH5 is secreted, complexes with other parasite proteins including CyRPA and RIPR, and contains a conserved N-terminal region (RH5Nt) of unknown function that is cleaved from the native protein. Here, we identify P113 as a merozoite surface protein that directly interacts with RH5Nt. Using recombinant proteins and a sensitive protein interaction assay, we establish the binding interdependencies of all the other known RH5 complex components and conclude that the RH5Nt-P113 interaction provides a releasable mechanism for anchoring RH5 to the merozoite surface. We exploit these findings to design a chemically synthesized peptide corresponding to RH5Nt, which could contribute to a cost-effective malaria vaccine
    corecore