8 research outputs found

    Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2)

    Get PDF
    BACKGROUND: The purpose of the present study was to continue the investigation of the membrane transport mechanisms of 20-(S)-camptothecin (CPT) in order to understand the possible role of membrane transporters on its oral bioavailability and disposition. METHODS: The intestinal transport kinetics of CPT were characterized using Caco-2 cells, MDCKII wild-type cells and MDCKII cells transfected with human P-glycoprotein (PGP) (ABCB1) or human multidrug resistance protein 2 (MRP2) (ABCC2). The effects of drug concentration, inhibitors and temperature on CPT directional permeability were determined. RESULTS: The absorptive (apical to basolateral) and secretory (basolateral to apical) permeabilities of CPT were found to be saturable. Reduced secretory CPT permeabilities with decreasing temperatures suggests the involvement of an active, transporter-mediated secretory pathway. In the presence of etoposide, the CPT secretory permeability decreased 25.6%. However, inhibition was greater in the presence of PGP and of the breast cancer resistant protein inhibitor, GF120918 (52.5%). The involvement of additional secretory transporters was suggested since the basolateral to apical permeability of CPT was not further reduced in the presence of increasing concentrations of GF120918. To investigate the involvement of specific apically-located secretory membrane transporters, CPT transport studies were conducted using MDCKII/PGP cells and MDCKII/MRP2 cells. CPT carrier-mediated permeability was approximately twofold greater in MDCKII/PGP cells and MDCKII/MRP2 cells than in MDCKII/wild-type cells, while the apparent K(m )values were comparable in all three cell lines. The efflux ratio of CPT in MDCKII/PGP in the presence of 0.2 μM GF120918 was not completely reversed (3.36 to 1.49). However, the decrease in the efflux ratio of CPT in MDCKII/MRP2 cells (2.31 to 1.03) suggests that CPT efflux was completely inhibited by MK571, a potent inhibitor of the Multidrug Resistance Protein transporter family. CONCLUSIONS: The current results provide evidence that PGP and MRP2 mediate the secretory transport of CPT in vitro. However, the involvement of other transporters cannot be ruled out based on these studies. Since these transporters are expressed in the intestine, liver and kidney variations in their expression levels and/or regulation may be responsible for the erratic oral absorption and biliary excretion of CPT observed in human subjects

    Updates in Gastrointestinal Oncology – insights from the 2008 44th annual meeting of the American Society of Clinical Oncology

    Get PDF
    We have reviewed the pivotal presentations rcelated to colorectal cancer (CRC) and other gastrointestinal malignancies from 2008 annual meeting of the American Society of Clinical Oncology (ASCO). We have discussed the scientific findings and the impact on practice guidelines and ongoing clinical trials. The report on KRAS status in patients with metastatic CRC receiving epidermal growth factor receptor (EGFR) targeted antibody treatment has led to a change in National Comprehensive Cancer Network guideline that recommends only patients with wild-type KRAS tumor should receive this treatment. The results of double biologics (bevacizumab and anti-EGFR antibody) plus chemotherapy as first-line treatment in patients with metastatic CRC has shown a worse outcome than bevacizumab-based regimen. Microsatellite Instability has again been confirmed to be an important predictor in patients with stage II colon cancer receiving adjuvant treatment
    corecore