6 research outputs found

    Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk

    Get PDF
    Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al

    Evolution of a Higher Intracellular Oxidizing Environment in Caenorhabditis elegans under Relaxed Selection

    Get PDF
    We explored the relationship between relaxed selection, oxidative stress, and spontaneous mutation in a set of mutationaccumulation (MA) lines of the nematode Caenorhabditis elegans and in their common ancestor. We measured steady-state levels of free radicals and oxidatively damaged guanosine nucleosides in the somatic tissues of five MA lines for which nuclear genome base substitution and GC-TA transversion frequencies are known. The two markers of oxidative stress are highly correlated and are elevated in the MA lines relative to the ancestor; point estimates of the per-generation rate of mutational decay (DM) of these measures of oxidative stress are similar to those reported for fitness-related traits. Conversely, there is no significant relationship between either marker of oxidative stress and the per-generation frequencies of base substitution or GC-TA transversion. Although these results provide no direct evidence for a causative relationship between oxidative damage and base substitution mutations, to the extent that oxidative damage may be weakly mutagenic in the germline, the case for condition-dependent mutation is advanced
    corecore