251 research outputs found

    Macrophages Recognize Size and Shape of Their Targets

    Get PDF
    Recognition by macrophages is a key process in generating immune response against invading pathogens. Previous studies have focused on recognition of pathogens through surface receptors present on the macrophage's surface. Here, using polymeric particles of different geometries that represent the size and shape range of a variety of bacteria, the importance of target geometry in recognition was investigated. The studies reported here reveal that attachment of particles of different geometries to macrophages exhibits a strong dependence on size and shape. For all sizes and shapes studied, particles possessing the longest dimension in the range of 2–3 ”m exhibited highest attachment. This also happens to be the size range of most commonly found bacteria in nature. The surface features of macrophages, in particular the membrane ruffles, might play an important role in this geometry-based target recognition by macrophages. These findings have significant implications in understanding the pathogenicity of bacteria and in designing drug delivery carriers

    The Use of Sulfasalazine in Atrophie Blanche

    Full text link
    Atrophie blanche can be a chronic condition for which there is no satisfactory treatment. Two patients with atrophie blanche who had not responded to various therapeutic modalities were given a trial of sulfasalazine 1 g three times daily. The ulcers healed within 3 months in both cases. In view of these positive results, patients should be treated with sulfasalazine to determine the efficacy of this drug in atrophie blanche.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65527/1/j.1365-4362.1990.tb02594.x.pd

    Olfactory function following open rhinoplasty: A 6-month follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients undergoing any type of nasal surgery may experience degrees of postoperative olfactory dysfunction. We sought to investigate "when" the olfactory function recovers to its preoperative levels.</p> <p>Methods</p> <p>In this cohort design, 40 of 65 esthetic open rhinoplasty candidates with equal gender distribution, who met the inclusion criteria, were assessed for their olfactory function using the Smell Identification Test (SIT) with 40 familiar odors in sniffing bottles. All the patients were evaluated for the SIT scores preoperatively and postoperatively (at week 1, week 6, and month 6).</p> <p>Results</p> <p>At postoperative week one, 87.5% of the patients had anosmia, and the rest exhibited at least moderate levels of hyposmia. The anosmia, which was the dominant pattern at postoperative week 1, resolved and converted to various levels of hyposmia, so that no one at postoperative week 6 showed any such complain. At postoperative week six, 85% of the subjects experienced degrees of hyposmia, almost all being mild to moderate. At postoperative six month, the olfactory function had already reverted to the preoperative levels: no anosmia or moderate to severe hyposmia. A repeated ANOVA was indicative of significant differences in the olfactory function at the different time points. According to our post hoc Benfronney, the preoperative scores had a significant difference with those at postoperative week 1, week 6, but not with the ones at month 6.</p> <p>Conclusion</p> <p>Esthetic open rhinoplasty may be accompanied by some degrees of postoperative olfactory dysfunction. Patients need a time interval of 6 weeks to 6 months to fully recover their baseline olfactory function.</p

    Understanding the impact of antibiotic therapies on the respiratory tract resistome: A novel pooled-template metagenomic sequencing strategy

    Get PDF
    Determining the effects of antimicrobial therapies on airway microbiology at a population-level is essential. Such analysis allows, for example, surveillance of antibiotic-induced changes in pathogen prevalence, the emergence and spread of antibiotic resistance, and the transmission of multi-resistant organisms. However, current analytical strategies for understanding these processes are limited. Culture- and PCR-based assays for specific microbes require the a priori selection of targets, while antibiotic sensitivity testing typically provides no insight into either the molecular basis of resistance, or the carriage of resistance determinants by the wider commensal microbiota. Shotgun metagenomic sequencing provides an alternative approach that allows the microbial composition of clinical samples to be described in detail, including the prevalence of resistance genes and virulence traits. While highly informative, the application of metagenomics to large patient cohorts can be prohibitively expensive. Using sputum samples from a randomised placebo-controlled trial of erythromycin in adults with bronchiectasis, we describe a novel, cost-effective strategy for screening patient cohorts for changes in resistance gene prevalence. By combining metagenomic screening of pooled DNA extracts with validatory quantitative PCR-based analysis of candidate markers in individual samples, we identify population-level changes in the relative abundance of specific macrolide resistance genes. This approach has the potential to provide an important adjunct to current analytical strategies, particularly within the context of antimicrobial clinical trials

    Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis

    Get PDF
    Plant defense against microbial pathogens depends on the action of several endogenously produced hormones, including jasmonic acid (JA) and ethylene (ET). In defense against necrotrophic pathogens, the JA and ET signaling pathways synergize to activate a specific set of defense genes including PLANT DEFENSIN1.2 (PDF1.2). The APETALA2/Ethylene Response Factor (AP2/ERF)-domain transcription factor ORA59 acts as the integrator of the JA and ET signaling pathways and is the key regulator of JA- and ET-responsive PDF1.2 expression. The present study was aimed at the identification of elements in the PDF1.2 promoter conferring the synergistic response to JA/ET and interacting with ORA59. We show that the PDF1.2 promoter was activated synergistically by JA and the ET-releasing agent ethephon due to the activity of two GCC boxes. ORA59 bound in vitro to these GCC boxes and trans-activated the PDF1.2 promoter in transient assays via these two boxes. Using the chromatin immunoprecipitation technique we were able to show that ORA59 bound the PDF1.2 promoter in vivo. Finally, we show that a tetramer of a single GCC box conferred JA/ethephon-responsive expression, demonstrating that the JA and ET signaling pathways converge to a single type of GCC box. Therefore ORA59 and two functionally equivalent GCC box binding sites form the module that enables the PDF1.2 gene to respond synergistically to simultaneous activation of the JA and ET signaling pathways

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Domain Organization of Long Signal Peptides of Single-Pass Integral Membrane Proteins Reveals Multiple Functional Capacity

    Get PDF
    Targeting signals direct proteins to their extra - or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization (“NtraC model”) in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals
    • 

    corecore