21 research outputs found
Model-Based Flaw Reconstruction and Flaw Parameter Estimation Using a Limited Set of Radiographic Projections
This paper presents an approach to the reconstruction and parameter estimation of flaw models in NDE radiography. The reconstruction of flaw models rather than the flaw distribution itself reduces the required number of projections as well as the complexity of the measurement system [1,2]. In this approach, crack-like flaws are modeled as piecewise linear curves, and volumetric flaws are modeled as ellipsoids. Our emphasis here is on a method for estimating the model parameters for crack-like flaws using a linear model with more than the minimal number of required projections. Extra projections reduce the effects of measurement errors and film noise. We also present the development of the volumetric flaw model and outline a method for its inversion
The Association of State Opioid Misuse Prevention Policies With Patient‐ and Provider‐Related Outcomes: A Scoping Review
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154648/1/milq12436.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154648/2/milq12436_am.pd
High-Throughput Analysis of in-vitro LFP Electrophysiological Signals: A validated workflow/software package
Synchronized brain activity in the form of alternating epochs of massive persistent network activity and periods of generalized neural silence, has been extensively studied as a fundamental form of circuit dynamics, important for many cognitive functions including short-term memory, memory consolidation, or attentional modulation. A key element in such studies is the accurate determination of the timing and duration of those network events. The local field potential (LFP) is a particularly attractive method for recording network activity, because it allows for long and stable recordings from multiple sites, allowing researchers to estimate the functional connectivity of local networks. Here, we present a computational method for the automatic detection and quantification of in-vitro LFP events, aiming to overcome the limitations of current approaches (e.g. slow analysis speed, arbitrary threshold-based detection and lack of reproducibility across and within experiments). The developed method is based on the implementation of established signal processing and machine learning approaches, is fully automated and depends solely on the data. In addition, it is fast, highly efficient and reproducible. The performance of the software is compared against semi-manual analysis and validated by verification of prior biological knowledge
Development of the pelvis and posterior part of the vertebral column in the Anura
The anuran pelvic girdle is unique among all amphibians in that its acetabular portion is located far posterior to the sacrum, lateral to the postsacral (= caudal) vertebral column, which is reduced to a single rod-like element called the urostyle. This situation in the adult is strikingly different not only from that in ancestral temnospondyls but also in other modern amphibians. Because there is no fossil that would document this evolutionary anatomical modification except for Triadobatrachus, the only data may be inferred from development in modern anurans. We chose seven anuran species (belonging to the genera Discoglossus, Bombina, Pelobates, Bufo, Rana and Xenopus), representing the principal locomotory types (saltation, swimming, crawling and burrowing). Development of the pelvic girdle was studied on cleared and stained whole mounts and partly on serial histological sections. The basic developmental pattern was similar in all species: the pelvis on both sides develops from two centres (puboischiadic and iliac, respectively). The ilium then extends vertically towards the sacral vertebra and later rotates posteriorly so that ultimately the acetabulum is lateral to the tail (= urostyle). Only minor deviations from this pattern were found, mainly associated with differences in water and terrestrial dwelling
Beyond the brain-Peripheral kisspeptin signaling is essential for promoting endometrial gland development and function
Uterine growth and endometrial gland formation (adenogenesis) and function, are essential for fertility and are controlled by estrogens and other regulators, whose nature and physiological relevance are yet to be elucidated. Kisspeptin, which signals via Kiss1r, is essential for fertility, primarily through its central control of the hypothalamic-pituitary-ovarian axis, but also likely through peripheral actions. Using genetically modified mice, we addressed the contributions of central and peripheral kisspeptin signaling in regulating uterine growth and adenogenesis. Global ablation of Kiss1 or Kiss1r dramatically suppressed uterine growth and almost fully prevented adenogenesis. However, while uterine growth was fully rescued by E2 treatment of Kiss1(−/−) mice and by genetic restoration of kisspeptin signaling in GnRH neurons in Kiss1r(−/−) mice, functional adenogenesis was only marginally restored. Thus, while uterine growth is largely dependent on ovarian E2-output via central kisspeptin signaling, peripheral kisspeptin signaling is indispensable for endometrial adenogenesis and function, essential aspects of reproductive competence