12 research outputs found
Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography–mass spectrometry-olfactometry
Lions (Panthera leo) use chemical signaling to indicate health, reproductive status, and territorial ownership. To date, no study has reported on both scent and composition of marking fluid (MF) from P. leo. The objectives of this study were to: 1) develop a novel method for simultaneous chemical and scent identification of lion MF in its totality (urine + MF), 2) identify characteristic odorants responsible for the overall scent of MF as perceived by human panelists, and 3) compare the existing library of known odorous compounds characterized as eliciting behaviors in animals in order to understand potential functionality in lion behavior. Solid-phase microextraction and simultaneous chemical-sensory analyses with multidimensional gas-chromatography-mass spectrometry-olfactometry improved separating, isolating, and identifying mixed (MF, urine) compounds versus solvent-based extraction and chemical analyses. 2,5-Dimethylpyrazine, 4-methylphenol, and 3-methylcyclopentanone were isolated and identified as the compounds responsible for the characteristic odor of lion MF. Twenty-eight volatile organic compounds (VOCs) emitted from MF were identified, adding a new list of compounds previously unidentified in lion urine. New chemicals were identified in nine compound groups: ketones, aldehydes, amines, alcohols, aromatics, sulfur-containing compounds, phenyls, phenols, and volatile fatty acids. Twenty-three VOCs are known semiochemicals that are implicated in attraction, reproduction, and alarm-signaling behaviors in other species
Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice
Rice (Oryza sativa) has two betaine aldehyde dehydrogenase homologs, BAD1 and BAD2, encoded on chromosome four and chromosome eight respectively. BAD2 is responsible for the characteristic aroma of fragrant rice. Complementary DNA clones of both BAD1 and BAD2 were isolated and expressed in E. coli. BAD2 had optimum activity at pH 10, little to no affinity towards N-acetyl-gamma-aminobutyraldehyde (NAGABald) with a Km of approximately 10 mM and moderate affinity towards gamma-guanidinobutyraldehyde (GGBald) and betaine aldehyde (bet-ald) with Km values of approximately 260 mu M and 63 mu M respectively. A lower Km of approximately 9 mu M was observed with gamma-aminobutyraldehyde (GABald), suggesting BAD2 has a higher affinity towards this substate in vivo. The enzyme encoded on chromosome four, BAD1, had optimum activity at pH 9.5, showed little to no affinity towards bet-ald with a Km of 3 mM and had moderate affinity towards GGBald, NAGABald and GABald with Km values of approximately 545, 420 and 497 mu M respectively. BAD1 had a half life roughly double that of BAD2. We discuss the implications of these findings on the pathway of fragrance generation in Basmati and Jasmine rice and the potential of rice to accumulate the osmoprotectant glycine betaine