45 research outputs found

    Nonintrusive reduced order model for parametric solutions of inertia relief problems

    Get PDF
    The Inertia Relief (IR) technique is widely used by industry and produces equilibrated loads allowing to analyze unconstrained systems without resorting to the more expensive full dynamic analysis. The main goal of this work is to develop a computational framework for the solution of unconstrained parametric structural problems with IR and the Proper Generalized Decomposition (PGD) method. First, the IR method is formulated in a parametric setting for both material and geometric parameters. A reduced order model using the encapsulated PGD suite is then developed to solve the parametric IR problem, circumventing the so-called curse of dimensionality. With just one offline computation, the proposed PGD-IR scheme provides a computational vademecum that contains all the possible solutions for a predefined range of the parameters. The proposed approach is nonintrusive and it is therefore possible to be integrated with commercial finite element (FE) packages. The applicability and potential of the developed technique is shown using a three-dimensional test case and a more complex industrial test case. The first example is used to highlight the numerical properties of the scheme, whereas the second example demonstrates the potential in a more complex setting and it shows the possibility to integrate the proposed framework within a commercial FE package. In addition, the last example shows the possibility to use the generalized solution in a multi-objective optimization setting

    On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

    Full text link
    In this chapter, we analyze the steady-state microscale fluid--structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney--Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate--pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.Comment: 19 pages, 3 figures, Springer book class; v2: minor revisions, final form of invited contribution to the Springer volume entitled "Dynamical Processes in Generalized Continua and Structures" (in honour of Academician D.I. Indeitsev), eds. H. Altenbach, A. Belyaev, V. A. Eremeyev, A. Krivtsov and A. V. Porubo

    Advances in Aeroelasticity

    No full text

    Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces

    No full text
    corecore