5 research outputs found

    Demagnetization of Quantum Dot Nuclear Spins: Breakdown of the Nuclear Spin Temperature Approach

    Full text link
    The physics of interacting nuclear spins arranged in a crystalline lattice is typically described using a thermodynamic framework: a variety of experimental studies in bulk solid-state systems have proven the concept of a spin temperature to be not only correct but also vital for the understanding of experimental observations. Using demagnetization experiments we demonstrate that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general not be described by a spin temperature. We associate the observed deviations from a thermal spin state with the presence of strong quadrupolar interactions within the QD that cause significant anharmonicity in the spectrum of the nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a complete suppression of angular momentum exchange between the nuclear spin ensemble and its environment, resulting in nuclear spin relaxation times exceeding an hour. Remarkably, the position dependent axes of quadrupolar interactions render magnetic field sweeps inherently non-adiabatic, thereby causing an irreversible loss of nuclear spin polarization.Comment: 15 pages, 3 figure

    High resolution nuclear magnetic resonance spectroscopy of highly-strained quantum dot nanostructures

    Full text link
    Much new solid state technology for single-photon sources, detectors, photovoltaics and quantum computation relies on the fabrication of strained semiconductor nanostructures. Successful development of these devices depends strongly on techniques allowing structural analysis on the nanometer scale. However, commonly used microscopy methods are destructive, leading to the loss of the important link between the obtained structural information and the electronic and optical properties of the device. Alternative non-invasive techniques such as optically detected nuclear magnetic resonance (ODNMR) so far proved difficult in semiconductor nano-structures due to significant strain-induced quadrupole broadening of the NMR spectra. Here, we develop new high sensitivity techniques that move ODNMR to a new regime, allowing high resolution spectroscopy of as few as 100000 quadrupole nuclear spins. By applying these techniques to individual strained self-assembled quantum dots, we measure strain distribution and chemical composition in the volume occupied by the confined electron. Furthermore, strain-induced spectral broadening is found to lead to suppression of nuclear spin magnetization fluctuations thus extending spin coherence times. The new ODNMR methods have potential to be applied for non-invasive investigations of a wide range of materials beyond single nano-structures, as well as address the task of understanding and control of nuclear spins on the nanoscale, one of the central problems in quantum information processing
    corecore