63 research outputs found

    Adaptive Heterodyne Interferometer for Ultrasonic NDE

    Get PDF
    For NDE applications, the remote generation and detection of ultrasound by laser present many advantages over traditional piezo-electric based methods. They provide nonintrusive, point generation and detection with a large frequency bandwidth. For example, it can be used on surfaces of complex geometry and elevated temperature on a production line. Ultrasound generation using absorption of pulse laser energy is well known. Various interferometers for optical detection of ultrasound have been described in the literature [1]. In order for the interferometer to be attractive for NDE applications, the interferometer must also be able to operate, without loss of sensitivity, in an environment where large amplitude low frequency vibrations are generally present. Furthermore, the interferometer must be able to achieve a good sensitivity on rough surfaces. The laser light reflected on a rough surface is characterized by speckles. The random intensity and phase distributions of these speckles require the use of interferometer with large étendue. In addition, the possibility of using an optical fiber in the path of the probe beam without loss in the interferometer sensitivity is highly desirable for applications where access to the specimen is limited. The confocal Fabry-Pérot interferometer [1] has been shown to be well adapted for NDE applications. Unfortunately, since the elimination of the optical side-bands is based on the optical filtering action of the confocal cavity, it is sensitive mostly to high frequencies for a reasonable cavity size, typically above 1MHz for a 1 meter cavity length

    Optical Detection of Ultrasound by Two-Wave Mixing in Photorefractive Semiconductor Crystals Under Applied Field

    Get PDF
    The optical detection of transient surface motion has many practical applications which include, in particular, the vibration monitoring of engineering structures (aircraft, power plants,...) and the detection of ultrasound produced by piezoelectric transducer or by pulse laser excitation. This last application where ultrasound is generated and detected by lasers, presents many advantages over conventional piezoelectric based methods. First, laser-ultrasonics is a remote sensing technique. Consequently it can be used, for example, for inspecting hot materials and products moving on a production line. Second, surfaces of complex shapes can also very easily be probed. For many applications, these advantages compensate the usually lower sensitivity of the laser-based technique compared to piezoelectric transduction

    Bilateral atypical insufficiency fractures of the proximal tibia and a unilateral distal femoral fracture associated with long-term intravenous bisphosphonate therapy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Atypical insufficiency fractures of the femur in patients on long-term bisphosphonate therapy have been well described in recent literature. The majority of cases are associated with minimal or no trauma and occur in the subtrochanteric or diaphyseal region.</p> <p>Case presentation</p> <p>We describe the case of a 76-year-old British Caucasian woman who presented initially to an emergency department and then to her primary care physician with a long-standing history of bilateral knee pain after minor trauma. Plain radiographs showed subtle linear areas of sclerosis bilaterally in her proximal tibiae. Magnetic resonance imaging confirmed the presence of insufficiency fractures in these areas along with her left distal femur. There are very few reports of atypical insufficiency fractures involving the tibia in patients on long-term bisphosphonate therapy and this appears to be the only documented bilateral case involving the metaphyseal regions of the proximal tibia and distal femur.</p> <p>Conclusion</p> <p>In addition to existing literature describing atypical fractures in the proximal femur and femoral shaft, there is a need for increased awareness that these fractures can also occur in other weight-bearing areas of the skeleton. All clinicians involved in the care of patients taking long-term bisphosphonates need to be aware of the growing association between new onset lower limb pain and atypical insufficiency fractures.</p

    Snapshot photoacoustic topography through an ergodic relay of optical absorption in vivo

    Get PDF
    Photoacoustic tomography (PAT) has demonstrated versatile biomedical applications, ranging from tracking single cells to monitoring whole-body dynamics of small animals and diagnosing human breast cancer. Currently, PAT has two major implementations: photoacoustic computed tomography (PACT) and photoacoustic microscopy (PAM). PACT uses a multi-element ultrasonic array for parallel detection, which is relatively complex and expensive. In contrast, PAM requires point-by-point scanning with a single-element detector, which has a limited imaging throughput. The trade-off between the system cost and throughput demands a new imaging method. To this end, we have developed photoacoustic topography through an ergodic relay (PATER). PATER can capture a wide-field image with only a single-element ultrasonic detector upon a single laser shot. This protocol describes the detailed procedures for PATER system construction, including component selection, equipment setup and system alignment. A step-by-step guide for in vivo imaging of a mouse brain is provided as an example application. Data acquisition, image reconstruction and troubleshooting procedures are also elaborated. It takes ~130 min to carry out this protocol, including ~60 min for both calibration and snapshot wide-field data acquisition using a laser with a 2-kHz pulse repetition rate. PATER offers low-cost snapshot wide-field imaging of fast dynamics, such as visualizing blood pulse wave propagation and tracking melanoma tumor cell circulation in mice in vivo. We envision that PATER will have wide biomedical applications and anticipate that the compact size of the setup will allow it to be further developed as a wearable device to monitor human vital signs

    Retention on Buprenorphine Is Associated with High Levels of Maximal Viral Suppression among HIV-Infected Opioid Dependent Released Prisoners

    Get PDF
    HIV-infected prisoners lose viral suppression within the 12 weeks after release to the community. This prospective study evaluates the use of buprenorphine/naloxone (BPN/NLX) as a method to reduce relapse to opioid use and sustain viral suppression among released HIV-infected prisoners meeting criteria for opioid dependence (OD).From 2005-2010, 94 subjects meeting DSM-IV criteria for OD were recruited from a 24-week prospective trial of directly administered antiretroviral therapy (DAART) for released HIV-infected prisoners; 50 (53%) selected BPN/NLX and were eligible to receive it for 6 months; the remaining 44 (47%) selected no BPN/NLX therapy. Maximum viral suppression (MVS), defined as HIV-1 RNA<50 copies/mL, was compared for the BPN/NLX and non-BPN/NLX (N = 44) groups.The two groups were similar, except the BPN/NLX group was significantly more likely to be Hispanic (56.0% v 20.4%), from Hartford (74.4% v 47.7%) and have higher mean global health quality of life indicator scores (54.18 v 51.40). MVS after 24 weeks of being released was statistically correlated with 24-week retention on BPN/NLX [AOR = 5.37 (1.15, 25.1)], having MVS at the time of prison-release [AOR = 10.5 (3.21, 34.1)] and negatively with being Black [AOR = 0.13 (0.03, 0.68)]. Receiving DAART or methadone did not correlate with MVS.In recognition that OD is a chronic relapsing disease, strategies that initiate and retain HIV-infected prisoners with OD on BPN/NLX is an important strategy for improving HIV treatment outcomes as a community transition strategy

    Specifications of an Ultrasonic Receiver Based on Two-Wave Mixing in Photorefractive Gallium Arsenide Implemented in a Laser-Ultrasonic System

    No full text
    Optical techniques for ultrasonic measurements present several advantages over conventional piezoelectric methods. First, they are remote sensing techniques and can be, for example, used for the inspection of materials at elevated temperature or products moving on a production line. Secondly, surfaces of complex shape can be easily probed since these techniques work with scattered light. For specific applications, these advantages compensate the usually lower sensitivity of optical techniques
    corecore