46 research outputs found

    Separate areas for mirror responses and agency within the parietal operculum

    Get PDF
    There is common neural activity in parietal and premotor cortex when executing and observing goal-directed movements: the “mirror” response. In addition, active and passive limb movements cause overlapping activity in premotor and somatosensory cortex. This association of motor and sensory activity cannot ascribe agency, the ability to discriminate between self- and non-self-generated events. This requires that some signals accompanying self-initiated limb movement dissociate from those evoked by observing the action of another or by movement imposed on oneself by external force. We demonstrated associated activity within the medial parietal operculum in response to feedforward visual or somatosensory information accompanying observed and imposed finger movements. In contrast, the response to motor and somatosensory information during self-initiated finger and observed movements resulted in activity localized to the lateral parietal operculum. This ascribes separate functions to medial and lateral second-order somatosensory cortex, anatomically dissociating the agent and the mirror response, demonstrating how executed and observed events are distinguished despite common activity in widespread sensorimotor cortices

    Monitoring and the controlled processing of meaning: Distinct prefrontal systems

    Get PDF

    The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention

    Get PDF
    Understanding how dynamic changes in brain activity control behavior is a major challenge of cognitive neuroscience. Here, we consider the brain as a complex dynamic system and define two measures of brain dynamics: the synchrony of brain activity, measured by the spatial coherence of the BOLD signal across regions of the brain; and metastability, which we define as the extent to which synchrony varies over time. We investigate the relationship among brain network activity, metastability, and cognitive state in humans, testing the hypothesis that global metastability is “tuned” by network interactions. We study the following two conditions: (1) an attentionally demanding choice reaction time task (CRT); and (2) an unconstrained “rest” state. Functional MRI demonstrated increased synchrony, and decreased metastability was associated with increased activity within the frontoparietal control/dorsal attention network (FPCN/DAN) activity and decreased default mode network (DMN) activity during the CRT compared with rest. Using a computational model of neural dynamics that is constrained by white matter structure to test whether simulated changes in FPCN/DAN and DMN activity produce similar effects, we demonstate that activation of the FPCN/DAN increases global synchrony and decreases metastability. DMN activation had the opposite effects. These results suggest that the balance of activity in the FPCN/DAN and DMN might control global metastability, providing a mechanistic explanation of how attentional state is shifted between an unfocused/exploratory mode characterized by high metastability, and a focused/constrained mode characterized by low metastability

    An Investigation of Twenty/20 Vision in Reading

    Get PDF
    One functional anatomical model of reading, drawing on human neuropsychological and neuroimaging data, proposes that a region in left ventral occipitotemporal cortex (vOT) becomes, through experience, specialized for written word perception. We tested this hypothesis by presenting numbers in orthographical and digital form with two task demands, phonological and numerical. We observed a main effect of task on left vOT activity but not stimulus type, with increased activity during the phonological task that was also associated with increased activity in the left inferior frontal gyrus, a region implicated in speech production. Region-of-interest analysis confirmed that there was equal activity for orthographical and digital written forms in the left vOT during the phonological task, despite greater visual complexity of the orthographical forms. This evidence is incompatible with a predominantly feedforward model of written word recognition that proposes that the left vOT is a specialized cortical module for word recognition in literate subjects. Rather, the physiological data presented here fits better with interactive computational models of reading that propose that written word recognition emerges from bidirectional interactions between three processes: visual, phonological, and semantic. Further, the present study is in accord with others that indicate that the left vOT is a route through which nonlinguistic stimuli, perhaps high contrast two-dimensional objects in particular, gain access to a predominantly left-lateralized language and semantic system

    Measuring vascular reactivity with breath-holds after stroke: a method to aid interpretation of group-level BOLD signal changes in longitudinal fMRI studies

    No full text
    Blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) is a widely used technique to map brain function, and to monitor its recovery after stroke. Since stroke has a vascular etiology, the neurovascular coupling between cerebral blood flow and neural activity may be altered, resulting in uncertainties when interpreting longitudinal BOLD signal changes. The purpose of this study was to demonstrate the feasibility of using a recently validated breath-hold task in patients with stroke, both to assess group level changes in cerebrovascular reactivity (CVR) and to determine if alterations in regional CVR over time will adversely affect interpretation of task-related BOLD signal changes. Three methods of analyzing the breath-hold data were evaluated. The CVR measures were compared over healthy tissue, infarcted tissue and the peri-infarct tissue, both sub-acutely (∼2 weeks) and chronically (∼4 months). In this cohort, a lack of CVR differences in healthy tissue between the patients and controls indicates that any group level BOLD signal change observed in these regions over time is unlikely to be related to vascular alterations. CVR was reduced in the peri-infarct tissue but remained unchanged over time. Therefore, although a lack of activation in this region compared with the controls may be confounded by a reduced CVR, longitudinal group-level BOLD changes may be more confidently attributed to neural activity changes in this cohort. By including this breath-hold-based CVR assessment protocol in future studies of stroke recovery, researchers can be more assured that longitudinal changes in BOLD signal reflect true alterations in neural activity

    Domain-general subregions of the medial prefrontal cortex contribute to recovery of language after stroke

    Get PDF
    We hypothesized that the recovery of speech production after left hemisphere stroke not only depends on the integrity of language-specialized brain systems, but also on ‘domain-general’ brain systems that have much broader functional roles. The presupplementary motor area/dorsal anterior cingulate forms part of the cingular-opercular network, which has a broad role in cognition and learning. Consequently, we have previously suggested that variability in the recovery of speech production after aphasic stroke may relate in part to differences in patients’ abilities to engage this domain-general brain region. To test our hypothesis, 27 patients (aged 59 ± 11 years) with a left hemisphere stroke performed behavioural assessments and event-related functional magnetic resonance imaging tasks at two time points; first in the early phase (∼2 weeks) and then ∼4 months after the ictus. The functional magnetic resonance imaging tasks were designed to differentiate between activation related to language production (sentential overt speech production—Speech task) and activation related to cognitive processing (non-verbal decision making). Simple rest and counting conditions were also included in the design. Task-evoked regional brain activations during the early and late phases were compared with a longitudinal measure of recovery of language production. In accordance with a role in cognitive processing, substantial activity was observed within the presupplementary motor area/dorsal anterior cingulate during the decision-making task. Critically, the level of activation within this region during speech production correlated positively with the longitudinal recovery of speech production across the two time points (as measured by the in-scanner performance in the Speech task). This relationship was observed for activation in both the early phase (r = 0.363, P = 0.03 one-tailed) and the late phase (r = 0.538, P = 0.004). Furthermore, presupplementary motor area/dorsal anterior cingulate activity was a predictor of both language recovery over time and language outcome at ∼4 months, over and above that predicted by lesion volume, age and the initial language impairment (general linear model overall significant at P < 0.0001; ExpB 1.01, P = 0.02). The particularly prominent relationship of the presupplementary motor area/dorsal anterior cingulate region with recovery of language was confirmed in voxel-wise correlation analysis, conducted unconstrained for the whole brain volume. These results accord with the hypothesis that the functionality of the presupplementary motor area/dorsal anterior cingulate contributes to language recovery after stroke. Given that this brain region is often spared in aphasic stroke, we propose that it is a sensible target for future research into rehabilitative treatments. More broadly, baseline assessment of domain-general systems could help provide a better prediction of language recovery

    Hemispheric Asymmetries in Speech Perception: Sense, Nonsense and Modulations

    Get PDF
    Background: The well-established left hemisphere specialisation for language processing has long been claimed to be based on a low-level auditory specialization for specific acoustic features in speech, particularly regarding 'rapid temporal processing'.Methodology: A novel analysis/synthesis technique was used to construct a variety of sounds based on simple sentences which could be manipulated in spectro-temporal complexity, and whether they were intelligible or not. All sounds consisted of two noise-excited spectral prominences (based on the lower two formants in the original speech) which could be static or varying in frequency and/or amplitude independently. Dynamically varying both acoustic features based on the same sentence led to intelligible speech but when either or both acoustic features were static, the stimuli were not intelligible. Using the frequency dynamics from one sentence with the amplitude dynamics of another led to unintelligible sounds of comparable spectro-temporal complexity to the intelligible ones. Positron emission tomography (PET) was used to compare which brain regions were active when participants listened to the different sounds.Conclusions: Neural activity to spectral and amplitude modulations sufficient to support speech intelligibility (without actually being intelligible) was seen bilaterally, with a right temporal lobe dominance. A left dominant response was seen only to intelligible sounds. It thus appears that the left hemisphere specialisation for speech is based on the linguistic properties of utterances, not on particular acoustic features

    Dissociation of Sensitivity to Spatial Frequency in Word and Face Preferential Areas of the Fusiform Gyrus

    No full text
    Different cortical regions within the ventral occipitotemporal junction have been reported to show preferential responses to particular objects. Thus, it is argued that there is evidence for a left-lateralized visual word form area and a right-lateralized fusiform face area, but the unique specialization of these areas remains controversial. Words are characterized by greater power in the high spatial frequency (SF) range, whereas faces comprise a broader range of high and low frequencies. We investigated how these high-order visual association areas respond to simple sine-wave gratings that varied in SF. Using functional magnetic resonance imaging, we demonstrated lateralization of activity that was concordant with the low-level visual property of words and faces; left occipitotemporal cortex is more strongly activated by high than by low SF gratings, whereas the right occipitotemporal cortex responded more to low than high spatial frequencies. Therefore, the SF of a visual stimulus may bias the lateralization of processing irrespective of its higher order properties
    corecore