26 research outputs found
Photon Management in Two-Dimensional Disordered Media
Elaborating reliable and versatile strategies for efficient light coupling
between free space and thin films is of crucial importance for new technologies
in energy efficiency. Nanostructured materials have opened unprecedented
opportunities for light management, notably in thin-film solar cells. Efficient
coherent light trapping has been accomplished through the careful design of
plasmonic nanoparticles and gratings, resonant dielectric particles and
photonic crystals. Alternative approaches have used randomly-textured surfaces
as strong light diffusers to benefit from their broadband and wide-angle
properties. Here, we propose a new strategy for photon management in thin films
that combines both advantages of an efficient trapping due to coherent optical
effects and broadband/wide-angle properties due to disorder. Our approach
consists in the excitation of electromagnetic modes formed by multiple light
scattering and wave interference in two-dimensional random media. We show, by
numerical calculations, that the spectral and angular responses of thin films
containing disordered photonic patterns are intimately related to the in-plane
light transport process and can be tuned through structural correlations. Our
findings, which are applicable to all waves, are particularly suited for
improving the absorption efficiency of thin-film solar cells and can provide a
novel approach for high-extraction efficiency light-emitting diodes
Observation of soliton pulse compression in photonic crystal waveguides
We demonstrate soliton-effect pulse compression in mm-long photonic crystal
waveguides resulting from strong anomalous dispersion and self-phase
modulation. Compression from 3ps to 580fs, at low pulse energies(~10pJ), is
measured via autocorrelation
Ultrafast evolution of photonic eigenstates in k-space\ud
Periodic structures have a large influence on propagating waves. This holds for various types of waves over a large range of length scales: from electrons in atomic crystals1 and light in photonic crystals2, 3, 4 to acoustic waves in sonic crystals5. The eigenstates of these waves are best described with a band structure, which represents the relation between the energy and the wavevector (k). This relation is usually not straightforward: owing to the imposed periodicity, bands are folded into every Brillouin zone, inducing splitting of bands and the appearance of bandgaps. As a result, exciting phenomena such as negative refraction6, 7, auto-collimation of waves8, 9 and low group velocities10, 11, 12 arise. k-space investigations of electronic eigenstates have already yielded new insights into the behaviour of electrons at surfaces and in novel materials13, 14, 15, 16. However, for a complete characterization of a structure, an understanding of the mutual coupling of eigenstates is also essential. Here, we investigate the propagation of light pulses through a photonic crystal structure using a near-field microscope17, 18. Tracking the evolution of the photonic eigenstates in both k-space and time allows us to identify individual eigenstates and to uncover their dynamics and coupling to other eigenstates on femtosecond timescales even when co-localized in real space and time.\ud
\ud
\ud
--------------------------------------------------------------------------------\u
Simultaneous measurement of nanoscale electric and magnetic optical fields
Control of light鈥搈atter interactions at the nanoscale has advanced fields such as quantum optics1, photovoltaics2 and telecommunications3. These advances are driven by an improved understanding of the nanoscale behaviour of light, enabled by direct observations of the local electric fields near photonic nanostructures4, 5, 6. With the advent of metamaterials that respond to the magnetic component of light7, 8, schemes have been developed to measure the nanoscale magnetic field9, 10, 11, 12. However, these structures interact not only with the magnetic field, but also with the electric field of light. Here, we demonstrate the essential simultaneous detection of both electric and magnetic fields with subwavelength resolution. By explaining our measurements through reciprocal considerations, we create a route towards designing probes sensitive to specific desired combinations of electric and magnetic field components. Simultaneous access to nanoscale electric and magnetic fields will pave the way for new designs of optical nanostructures and metamaterials