2,922 research outputs found
Controlling the polarisation correlation of photon pairs from a charge-tuneable quantum dot
Correlation between the rectilinear polarisations of the photons emitted from
the biexciton decay in a single quantum dot is investigated in a device which
allows the charge-state of the dot to be controlled. Optimising emission from
the neutral exciton states maximises the operating efficiency of the biexciton
decay. This is important for single dot applications such as a triggered source
of entangled photons. As the bias on the device is reduced correlation between
the two photons is found to fall dramatically as emission from the negatively
charged exciton becomes significant. Lifetime measurements demonstrate that
electronic spin-scattering is the likely cause.Comment: 3 figure
Inversion of exciton level splitting in quantum dots
The demonstration of degeneracy of exciton spin states is an important step toward the production of entangled photon pairs from the biexciton cascade. We measure the fine structure of exciton and biexciton states for a large number of single InAs quantum dots in a GaAs matrix; the energetic splitting of the horizontally and vertically polarized components of the exciton doublet is shown to decrease as the exciton confinement decreases, crucially passing through zero and changing sign. Thermal annealing is shown to reduce the exciton confinement, thereby increasing the number of dots with splitting close to zero
Electric-field-induced coherent coupling of the exciton states in a single quantum dot
The signature of coherent coupling between two quantum states is an
anticrossing in their energies as one is swept through the other. In single
semiconductor quantum dots containing an electron-hole pair the eigenstates
form a two-level system that can be used to demonstrate quantum effects in the
solid state, but in all previous work these states were independent. Here we
describe a technique to control the energetic splitting of these states using a
vertical electric field, facilitating the observation of coherent coupling
between them. Near the minimum splitting the eigenstates rotate in the plane of
the sample, being orientated at 45{\deg} when the splitting is smallest. Using
this system we show direct control over the exciton states in one quantum dot,
leading to the generation of entangled photon pairs
Palaeoecological evaluation of the recent acidification of Lochnagar, Scotland
Lochnagar, a high altitude, relatively deep, come lake, lies on the Royal Deeside ESUHC of
Balmoral, in an area which experiences moderate levels of acid deposition, The loch catchment
comprises granite bedrock and is dominated by bare rock but overlain in places with blanket peals,
Lochnagar may thus be considered potentially susceptible to acidification, The contemporary pH of
the loch water is c. 5,0
A superconductor to superfluid phase transition in liquid metallic hydrogen
Although hydrogen is the simplest of atoms, it does not form the simplest of
solids or liquids. Quantum effects in these phases are considerable (a
consequence of the light proton mass) and they have a demonstrable and often
puzzling influence on many physical properties, including spatial order. To
date, the structure of dense hydrogen remains experimentally elusive. Recent
studies of the melting curve of hydrogen indicate that at high (but
experimentally accessible) pressures, compressed hydrogen will adopt a liquid
state, even at low temperatures. In reaching this phase, hydrogen is also
projected to pass through an insulator-to-metal transition. This raises the
possibility of new state of matter: a near ground-state liquid metal, and its
ordered states in the quantum domain. Ordered quantum fluids are traditionally
categorized as superconductors or superfluids; these respective systems feature
dissipationless electrical currents or mass flow. Here we report an analysis
based on topological arguments of the projected phase of liquid metallic
hydrogen, finding that it may represent a new type of ordered quantum fluid.
Specifically, we show that liquid metallic hydrogen cannot be categorized
exclusively as a superconductor or superfluid. We predict that, in the presence
of a magnetic field, liquid metallic hydrogen will exhibit several phase
transitions to ordered states, ranging from superconductors to superfluids.Comment: for a related paper see cond-mat/0410425. A correction to the front
page caption appeared in Oct 14 issue of Nature:
http://www.nature.com/nature/links/041014/041014-11.htm
Belief revision and uncertain reasoning
When a new piece of information contradicts a currently held belief, one has to modify the set of beliefs in order to restore its consistency. In the case where it is necessary to give up a belief, some of them are less likely to be abandoned than others. The concept of epistemic entrenchment is used by some AI approaches to explain this fact based on formal properties of the belief set (e. g. , transitivity). Two experiments were designed to test the hypothesis that contrary to such views, (i) belief is naturally represented by degrees rather than in an all-or-nothing manner, (ii) entrenchment is primarily a matter of content and not only a matter of form, and (iii) consequently prior degree of belief is a powerful factor of change. The two experiments used Elio and Pelletier's (1997) paradigm in which participants were presented with full simple deductive arguments whose conclusion was denied, following which they were asked to decide which premise to revise
Palaeoecological evaluation of the recent acidification of Loch Laidon, Rannoch Moor, Scotland
Palaeoecological techniques have been utilised to examine the
recent acidification status of Loch Laidon, a large freshwater
loch on Rannoch Moor, Scotland
Missense Mutation R338W in ARHGEF9 in a Family with X-linked Intellectual Disability with Variable Macrocephaly and Macro-Orchidism
Non-syndromal X-linked intellectual disability (NS-XLID) represents a broad group of clinical disorders in which ID is the only clinically consistent manifestation. Although in many cases either chromosomal linkage data or knowledge of the >100 existing XLID genes has assisted mutation discovery, the underlying cause of disease remains unresolved in many families. We report the resolution of a large family (K8010) with NS-XLID, with variable macrocephaly and macro-orchidism. Although a previous linkage study had mapped the locus to Xq12-q21, this region contained too many candidate genes to be analyzed using conventional approaches. However, X-chromosome exome sequencing, bioinformatics analysis and segregation analysis revealed a novel missense mutation (c.1012C>T; p.R338W) in ARHGEF9. This gene encodes collybistin (CB), a neuronal GDP-GTP exchange factor previously implicated in several cases of XLID, as well as clustering of gephyrin and GABAA receptors at inhibitory synapses. Molecular modeling of the CB R338W substitution revealed that this change results in the substitution of a long electropositive side-chain with a large non-charged hydrophobic side-chain. The R338W change is predicted to result in clashes with adjacent amino acids (K363 and N335) and disruption of electrostatic potential and local folding of the PH domain, which is known to bind phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P). Consistent with this finding, functional assays revealed that recombinant CB CB2SH3- (R338W) was deficient in PI3P binding and was not able to translocate EGFP-gephyrin to submembrane microaggregates in an in vitro clustering assay. Taken together, these results suggest that the R338W mutation in ARHGEF9 is the underlying cause of NS-XLID in this family
- …