16 research outputs found

    α-Synuclein Over-Expression Induces Increased Iron Accumulation and Redistribution in Iron-Exposed Neurons

    No full text
    Parkinson’s disease is the most common α-synucleinopathy, and increased levels of iron are found in the substantia nigra of Parkinson’s disease patients, but the potential interlink between both molecular changes has not been fully understood. Metal to protein binding assays have shown that α-synuclein can bind iron in vitro; therefore, we hypothesized that iron content and iron distribution could be modified in cellulo, in cells over-expressing α-synuclein. Owing to particle-induced X-ray emission and synchrotron X-ray fluorescence chemical nano-imaging, we were able to quantify and describe the iron distribution at the subcellular level. We show that, in neurons exposed to excess iron, the mere over-expression of human α-synuclein results in increased levels of intracellular iron and in iron redistribution from the cytoplasm to the perinuclear region within α-synuclein-rich inclusions. Reproducible results were obtained in two distinct recombinant expression systems, in primary rat midbrain neurons and in a rat neuroblastic cell line (PC12), both infected with viral vectors expressing human α-synuclein. Our results link two characteristic molecular features found in Parkinson’s disease, the accumulation of α-synuclein and the increased levels of iron in the substantia nigra

    Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    No full text

    The role of hormonal and reproductive status in the treatment of anxiety disorders in women

    No full text
    © Springer Nature Singapore Pte Ltd. 2020. Exposure therapy, a key treatment for anxiety disorders, can be modelled in the laboratory using Pavlovian fear extinction. Understanding the hormonal and neurobiological mechanisms underlying fear extinction in females, who are twice more likely than males to present with anxiety disorders, may aid in optimising exposure therapy outcomes in this population. This chapter will begin by discussing the role of the sex hormones, estradiol and progesterone, in fear extinction in females. We will also propose potential mechanisms by which these hormones may modulate fear extinction. The second half of this chapter will discuss the long-term hormonal, neurological and behavioural changes that arise from pregnancy and motherhood and how these changes may alter the features of fear extinction in females. Finally, we will discuss implications of this research for the treatment of anxiety disorders in women with and without prior reproductive experience
    corecore