52 research outputs found
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma
BACKGROUND: Upper urothelial cancer (UUC), i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Defective mismatch repair (MMR) specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. METHODS: We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI) analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. RESULTS: A MSI-high phenotype was identified in 9/216 (4%) successfully analyzed patients and a MSI-low phenotype in 5/216 (2%). Loss of MMR protein immunostaining was found in 11/216 (5%) tumors, and affected most commonly MSH2 and MSH6. CONCLUSION: This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC
Prediction of cis-regulatory elements controlling genes differentially expressed by retinal and choroidal vascular endothelial cells
Cultured endothelial cells of the human retina and choroid demonstrate distinct patterns of gene expression. We hypothesized that differential gene expression reflected differences in the interactions of transcription factors and respective cis-regulatory motifs(s) in these two endothelial cell subpopulations, recognizing that motifs often exist as modules. We tested this hypothesis in silico by using TRANSFAC Professional and CisModule to identify cis-regulatory motifs and modules in genes that were differentially expressed by human retinal versus choroidal endothelial cells, as identified by analysis of a microarray data set. Motifs corresponding to eight transcription factors were significantly (p < 0.05) differentially abundant in genes that were relatively highly expressed in retinal (i.e., glucocorticoid receptor, high mobility group AT-hook 1, heat shock transcription factor 1, p53, vitamin D receptor) or choroidal (i.e., transcription factor E2F, Yin Yang 1, zinc finger 5) endothelial cells. Predicted cis-regulatory modules were quite different for these two groups of genes. Our findings raise the possibility of exploiting specific cis-regulatory motifs to target therapy at the ocular endothelial cells subtypes responsible for neovascular age-related macular degeneration or proliferative diabetic retinopathy
A census of baryons in the Universe from localized fast radio bursts
More than three quarters of the baryonic content of the Universe resides in a
highly diffuse state that is difficult to observe, with only a small fraction
directly observed in galaxies and galaxy clusters. Censuses of the nearby
Universe have used absorption line spectroscopy to observe these invisible
baryons, but these measurements rely on large and uncertain corrections and are
insensitive to the majority of the volume, and likely mass. Specifically,
quasar spectroscopy is sensitive either to only the very trace amounts of
Hydrogen that exists in the atomic state, or highly ionized and enriched gas in
denser regions near galaxies. Sunyaev-Zel'dovich analyses provide evidence of
some of the gas in filamentary structures and studies of X-ray emission are
most sensitive to gas near galaxy clusters. Here we report the direct
measurement of the baryon content of the Universe using the dispersion of a
sample of localized fast radio bursts (FRBs), thus utilizing an effect that
measures the electron column density along each sight line and accounts for
every ionised baryon. We augment the sample of published arcsecond-localized
FRBs with a further four new localizations to host galaxies which have measured
redshifts of 0.291, 0.118, 0.378 and 0.522, completing a sample sufficiently
large to account for dispersion variations along the line of sight and in the
host galaxy environment to derive a cosmic baryon density of (95% confidence). This independent
measurement is consistent with Cosmic Microwave Background and Big Bang
Nucleosynthesis values.Comment: Published online in Nature 27 May, 202
Minimal Length Scale Scenarios for Quantum Gravity
We review the question of whether the fundamental laws of nature limit our
ability to probe arbitrarily short distances. First, we examine what insights
can be gained from thought experiments for probes of shortest distances, and
summarize what can be learned from different approaches to a theory of quantum
gravity. Then we discuss some models that have been developed to implement a
minimal length scale in quantum mechanics and quantum field theory. These
models have entered the literature as the generalized uncertainty principle or
the modified dispersion relation, and have allowed the study of the effects of
a minimal length scale in quantum mechanics, quantum electrodynamics,
thermodynamics, black-hole physics and cosmology. Finally, we touch upon the
question of ways to circumvent the manifestation of a minimal length scale in
short-distance physics.Comment: Published version available at
http://www.livingreviews.org/lrr-2013-
Varying constants, Gravitation and Cosmology
Fundamental constants are a cornerstone of our physical laws. Any constant
varying in space and/or time would reflect the existence of an almost massless
field that couples to matter. This will induce a violation of the universality
of free fall. It is thus of utmost importance for our understanding of gravity
and of the domain of validity of general relativity to test for their
constancy. We thus detail the relations between the constants, the tests of the
local position invariance and of the universality of free fall. We then review
the main experimental and observational constraints that have been obtained
from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites
dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic
microwave background and big bang nucleosynthesis. At each step we describe the
basics of each system, its dependence with respect to the constants, the known
systematic effects and the most recent constraints that have been obtained. We
then describe the main theoretical frameworks in which the low-energy constants
may actually be varying and we focus on the unification mechanisms and the
relations between the variation of different constants. To finish, we discuss
the more speculative possibility of understanding their numerical values and
the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit
CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer
Cells require nucleotides to support DNA replication and repair damaged DNA. In addition to de novo synthesis, cells recycle nucleotides from the DNA of dying cells or from cellular material ingested through the diet. Salvaged nucleosides come with the complication that they can contain epigenetic modifications. Because epigenetic inheritance of DNA methylation mainly relies on copying of the modification pattern from parental strands1, 2, 3, random incorporation of pre-modified bases during replication could have profound implications for epigenome fidelity and yield adverse cellular phenotypes. Although the salvage mechanism of 5-methyl-2′deoxycytidine (5mdC) has been investigated before4, 5, 6, it remains unknown how cells deal with the recently identified oxidized forms of 5mdC: 5-hydroxymethyl-2′deoxycytidine (5hmdC), 5-formy-2′deoxycytidine (5fdC) and 5-carboxyl-2′deoxycytidine (5cadC)7, 8, 9, 10. Here we show that enzymes of the nucleotide salvage pathway display substrate selectivity, effectively protecting newly synthesized DNA from the incorporation of epigenetically modified forms of cytosine. Thus, cell lines and animals can tolerate high doses of these modified cytidines without any deleterious effects on physiology. Notably, by screening cancer cell lines for growth defects after exposure to 5hmdC, we unexpectedly identify a subset of cell lines in which 5hmdC or 5fdC administration leads to cell lethality. Using genomic approaches, we show that the susceptible cell lines overexpress cytidine deaminase (CDA). CDA converts 5hmdC and 5fdC into variants of uridine that are incorporated into DNA, resulting in accumulation of DNA damage, and ultimately, cell death. Our observations extend current knowledge of the nucleotide salvage pathway by revealing the metabolism of oxidized epigenetic bases, and suggest a new therapeutic option for cancers, such as pancreatic cancer, that have CDA overexpression and are resistant to treatment with other cytidine analogues11
- …