518 research outputs found
DNAscan: personal computer compatible NGS analysis, annotation and visualisation.
BACKGROUND: Next Generation Sequencing (NGS) is a commonly used technology for studying the genetic basis of biological processes and it underpins the aspirations of precision medicine. However, there are significant challenges when dealing with NGS data. Firstly, a huge number of bioinformatics tools for a wide range of uses exist, therefore it is challenging to design an analysis pipeline. Secondly, NGS analysis is computationally intensive, requiring expensive infrastructure, and many medical and research centres do not have adequate high performance computing facilities and cloud computing is not always an option due to privacy and ownership issues. Finally, the interpretation of the results is not trivial and most available pipelines lack the utilities to favour this crucial step. RESULTS: We have therefore developed a fast and efficient bioinformatics pipeline that allows for the analysis of DNA sequencing data, while requiring little computational effort and memory usage. DNAscan can analyse a whole exome sequencing sample in 1 h and a 40x whole genome sequencing sample in 13 h, on a midrange computer. The pipeline can look for single nucleotide variants, small indels, structural variants, repeat expansions and viral genetic material (or any other organism). Its results are annotated using a customisable variety of databases and are available for an on-the-fly visualisation with a local deployment of the gene.iobio platform. DNAscan is implemented in Python. Its code and documentation are available on GitHub: https://github.com/KHP-Informatics/DNAscan . Instructions for an easy and fast deployment with Docker and Singularity are also provided on GitHub. CONCLUSIONS: DNAscan is an extremely fast and computationally efficient pipeline for analysis, visualization and interpretation of NGS data. It is designed to provide a powerful and easy-to-use tool for applications in biomedical research and diagnostic medicine, at minimal computational cost. Its comprehensive approach will maximise the potential audience of users, bringing such analyses within the reach of non-specialist laboratories, and those from centres with limited funding available
Mechanism of 150-cavity formation in influenza neuraminidase
The recently discovered 150-cavity in the active site of group-1 influenza A neuraminidase (NA) proteins provides a target for rational structure-based drug development to counter the increasing frequency of antiviral resistance in influenza. Surprisingly, the 2009 H1N1 pandemic virus (09N1) neuramidase was crystalized without the 150-cavity characteristic of group-1 NAs. Here we demonstrate, through a total sum of 1.6 μs of biophysical simulations, that 09N1 NA exists in solution preferentially with an open 150-cavity. Comparison with simulations using avian N1, human N2 and 09N1 with a I149V mutation and an extensive bioinformatics analysis suggests that the conservation of a key salt bridge is crucial in the stabilization of the 150-cavity across both subtypes. This result provides an atomic-level structural understanding of the recent finding that antiviral compounds designed to take advantage of contacts in the 150-cavity can inactivate both 2009 H1N1 pandemic and avian H5N1 viruses
ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients
Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists, including health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent. Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the interpretation of the relevance of novel and existing variants identified in DNA sequencing data
ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients
Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists, including health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent. Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the interpretation of the relevance of novel and existing variants identified in DNA sequencing data
Fundamental Reform of Payment for Adult Primary Care: Comprehensive Payment for Comprehensive Care
Primary care is essential to the effective and efficient functioning of health care delivery systems, yet there is an impending crisis in the field due in part to a dysfunctional payment system. We present a fundamentally new model of payment for primary care, replacing encounter-based imbursement with comprehensive payment for comprehensive care. Unlike former iterations of primary care capitation (which simply bundled inadequate fee-for-service payments), our comprehensive payment model represents new investment in adult primary care, with substantial increases in payment over current levels. The comprehensive payment is directed to practices to include support for the modern systems and teams essential to the delivery of comprehensive, coordinated care. Income to primary physicians is increased commensurate with the high level of responsibility expected. To ensure optimal allocation of resources and the rewarding of desired outcomes, the comprehensive payment is needs/risk-adjusted and performance-based. Our model establishes a new social contract with the primary care community, substantially increasing payment in return for achieving important societal health system goals, including improved accessibility, quality, safety, and efficiency. Attainment of these goals should help offset and justify the costs of the investment. Field tests of this and other new models of payment for primary care are urgently needed
Health care expenditure disparities in the European Union and underlying factors: a distribution dynamics approach
This paper examines health care expenditure (HCE) disparities between the European Union countries over the period 1995-2010. By means of using a continuous version of the distribution dynamics approach, the key conclusions are that the reduction in disparities is very weak and, therefore, persistence is the main characteristic of the HCE distribution. In view of these findings, a preliminary attempt is made to add some insights into potentially main factors behind the HCE distribution. The results indicate that whereas per capita income is by far the main determinant, the dependency ratio and female labour participation do not play any role in explaining the HCE distribution; as for the rest of the factors studied (life expectancy, infant mortality, R&D expenditure and public HCE expenditure share), we find that their role falls somewhat in between
Cancer mortality in a cohort of asbestos textile workers
A cohort of 889 men and 1077 women employed for at least 1 month between 1946 and 1984 by a former Italian leading asbestos (mainly textile) company, characterised by extremely heavy exposures often for short durations, was followed up to 1996, for a total of 53 024 person-years of observation. Employment data were obtained from factory personnel records, while vital status and causes of death were ascertained through municipality registers and local health units. We observed 222 cancer deaths compared with 116.4 expected (standardized mortality ratio, SMR=191). The highest ratios were found for pleural (SMR=4105), peritoneal (SMR=1817) and lung (SMR=282) cancers. We observed direct relationships with duration of employment for lung and peritoneal cancer, and with time since first employment for lung cancer and mesothelioma. Pleural cancer risk was independent from duration (SMR=3428 for employment <1 year, 7659 for 1–4 years, 2979 for 5–9 years and 2130 for ⩾10 years). Corresponding SMRs for lung cancer were 139, 251, 233 and 531. Nonsignificantly increased ratios were found for ovarian (SMR=261), laryngeal (SMR=238) and oro-pharyngeal (SMR=226) cancers. This study confirms and further quantifies the central role of latency in pleural mesothelioma and of cumulative exposure in lung cancer
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
The effect on survival of continuing chemotherapy to near death
<p>Abstract</p> <p>Background</p> <p>Overuse of anti-cancer therapy is an important quality-of-care issue. An aggressive approach to treatment can have negative effects on quality of life and cost, but its effect on survival is not well-defined.</p> <p>Methods</p> <p>Using the Surveillance, Epidemiology, and End Results-Medicare database, we identified 7,879 Medicare-enrolled patients aged 65 or older who died after having survived at least 3 months after diagnosis of advanced non-small cell lung cancer (NSCLC) between 1991 and 1999. We used Cox proportional hazards regression analysis, propensity scores, and instrumental variable analysis (IVA) to compare survival among patients who never received chemotherapy (n = 4,345), those who received standard chemotherapy but not within two weeks prior to death (n = 3,235), and those who were still receiving chemotherapy within 14 days of death (n = 299). Geographic variation in the application of chemotherapy was used as the instrument for IVA.</p> <p>Results</p> <p>Receipt of chemotherapy was associated with a 2-month improvement in overall survival. However, based on three different statistical approaches, no additional survival benefit was evident from continuing chemotherapy within 14 days of death. Moreover, patients receiving chemotherapy near the end of life were much less likely to enter hospice (81% versus 51% with no chemotherapy and 52% with standard chemotherapy, P < 0.001), or were more likely to be admitted within only 3 days of death.</p> <p>Conclusions</p> <p>Continuing chemotherapy for advanced NSCLC until very near death is associated with a decreased likelihood of receiving hospice care but not prolonged survival. Oncologists should strive to discontinue chemotherapy as death approaches and encourage patients to enroll in hospice for better end-of-life palliative care.</p
- …