12 research outputs found

    Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology

    Get PDF
    Marine natural products (MNPs) exhibit a wide range of pharmaceutically relevant bioactivities, including antibiotic, antiviral, anticancer, or anti-inflammatory properties. Besides marine macroorganisms such as sponges, algae, or corals, specifically marine bacteria and fungi have shown to produce novel secondary metabolites (SMs) with unique and diverse chemical structures that may hold the key for the development of novel drugs or drug leads. Apart from highlighting their potential benefit to humankind, this review is focusing on the manifold functions of SMs in the marine ecosystem. For example, potent MNPs have the ability to exile predators and competing organisms, act as attractants for mating purposes, or serve as dye for the expulsion or attraction of other organisms. A large compilation of literature on the role of MNPs in marine ecology is available, and several reviews evaluated the function of MNPs for the aforementioned topics. Therefore, we focused the second part of this review on the importance of bioactive compounds from crustose coralline algae (CCA) and their role during coral settlement, a topic that has received less attention. It has been shown that certain SMs derived from CCA and their associated bacteria are able to induce attachment and/or metamorphosis of many benthic invertebrate larvae, including globally threatened reef-building scleractinian corals. This review provides an overview on bioactivities of MNPs from marine microbes and their potential use in medicine as well as on the latest findings of the chemical ecology and settlement process of scleractinian corals and other invertebrate larvae

    Effects of a single intensive harvest event on fish populations inside a customary marine closure

    No full text
    In September 2008, the villagers of Kia Island, Fiji, opened their customary managed closure (Cakaulevu tabu) to fishing for a fundraiser that lasted for 5 weeks. We report on opportunistic before-after-control-impact surveys describing changes to coral reef communities both 4 weeks into the harvest and 1 year later compared with pre-harvest conditions. Prior to the harvest, there was a gradient in mean fish abundance and biomass per transect, with highest levels in the north of the closure (250 fish transect−1, 8,145.8 kg ha−1), intermediate levels in the south of the closure (159 fish transect−1, 4,672.1 kg ha−1) and lowest levels in the control area open to fishing (109 fish transect−1, 594.0 kg ha−1). During the harvest, there were extensive depletions in large-bodied, primary targeted fish species, with significant loss in biomass of Acanthuridae and Carangidae in the north and Lutjanidae and Serranidae in the south. We also observed significant increases in Acanthuridae, Lethrinidae and Scaridae in the control, suggesting a "bail-out" effect whereby fish left the closure in response to a rapid increase in fishing pressure. These changes were coupled with a large increase in turf algal cover at all survey areas, despite a large numerical increase in small, roving acanthurids (e.g., Ctenochaetus striatus) and scarids (e.g., Chlorurus sordidus). By 1 year later, fish biomass was significantly lower within the closure than before the harvest, while values in the control returned to pre-harvest levels, suggesting non-compliance with the reinstated fishing ban. We use the lessons learned from this event to suggest recommendations for promoting effective management of periodically harvested customary closures that are a common feature across much of Oceania

    Biological community structure on patch reefs in Biscayne National Park, FL, USA

    No full text
    Coral reef ecosystem management benefits from continual quantitative assessment of the resources being managed, plus assessment of factors that affect distribution patterns of organisms in the ecosystem. In this study, we investigate the relationships among physical, benthic, and fish variables in an effort to help explain the distribution patterns of organisms on patch reefs within Biscayne National Park, FL, USA. We visited a total of 196 randomly selected sampling stations on 12 shallow (<10 m) patch reefs and measured physical variables (e.g., substratum rugosity, substratum type) and benthic and fish community variables. We also incorporated data on substratum rugosity collected remotely via airborne laser surveying (Experimental Advanced Airborne Research Lidar—EAARL). Across all stations, only weak relationships were found between physical, benthic cover, and fish assemblage variables. Much of the variance was attributable to a “reef effect,” meaning that community structure and organism abundances were more variable at stations among reefs than within reefs. However, when the reef effect was accounted for and removed statistically, patterns were detected. Within reefs, juvenile scarids were most abundant at stations with high coverage of the fleshy macroalgae Dictyota spp., and the calcified alga Halimeda tuna was most abundant at stations with low EAARL rugosity. Explanations for the overwhelming importance of “reef” in explaining variance in our dataset could include the stochastic arrangement of organisms on patch reefs related to variable larval recruitment in space and time and/or strong historical effects due to patchy disturbances (e.g., hurricanes, fishing), as well as legacy effects of prior residents (“priority” effects)
    corecore