28 research outputs found

    Thromboelastography results on citrated whole blood from clinically healthy cats depend on modes of activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the last decade, thromboelastography (TEG) has gained increasing acceptance as a diagnostic test in veterinary medicine for evaluation of haemostasis in dogs, however the use of TEG in cats has to date only been described in one previous study and a few abstracts. The objective of the present study was to evaluate and compare three different TEG assays in healthy cats, in order to establish which assay may be best suited for TEG analyses in cats.</p> <p>Methods</p> <p>90 TEG analyses were performed on citrated whole blood samples from 15 clinically healthy cats using assays without activator (native) or with human recombinant tissue factor (TF) or kaolin as activators. Results for reaction time (R), clotting time (K), angle (α), maximum amplitude (MA) and clot lysis (LY30; LY60) were recorded.</p> <p>Results</p> <p>Coefficients of variation (CVs) were highest in the native assay and comparable in TF and kaolin activated assays. Significant differences were observed between native and kaolin assays for all measured parameters, between kaolin and TF for all measured parameters except LY60 and between native and TF assays for R and K.</p> <p>Conclusion</p> <p>The results indicate that TEG is a reproducible method for evaluation of haemostasis in clinically healthy cats. However, the three assays cannot be used interchangeably and the kaolin- and TF activated assays have the lowest analytical variation indicating that using an activator may be superior for performing TEG in cats.</p

    Thromboelastometry (TEM®) Findings in Disseminated Intravascular Coagulation in a Pig Model of Endotoxinemia

    No full text
    Standard coagulation tests have a low specificity and sensitivity for diagnosing disseminated intravascular coagulation. The aim of this study was to determine whether whole blood thromboelastometry (TEM) detects lipopolysaccharide (LPS)-induced changes in coagulation. Blood samples from 10 pigs were drawn at baseline, before and at the end of LPS infusion and 2, 3, 4 and 5 h after the start of endotoxinemia. Simultaneous to TEM, standard coagulation tests and extended coagulation analysis including tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1) were performed. Endotoxinemia resulted in a significant acceleration of the nonactivated TEM (NATEM) clotting time 2 h after the end of LPS infusion; in contrast, the changes in international normalized ratio and activated partial thromboplastin time suggested delayed initiation of coagulation. NATEM maximum clot firmness (MCF) and fibrin-based thromboelastometry test (FIBTEM®)-MCF decreased significantly from baseline until the last time point (from 64.6 ± 7.8 and 35.1 ± 12.8 mm to 52.8 ± 4.6 and 21.4 ± 11.8 mm, respectively; P = 0.01 for both parameters). A sharp, transient increase of t-PA had no effect on maximum lysis in the NATEM test. PAI-1 increased significantly 3 h after the start of LPS infusion, paralleled by a decrease in maximum lysis. In conclusion, TEM was superior to standard coagulation tests in reflecting initial activation of coagulation during endotoxinemia. TEM further suggested consumption of coagulation substrate; at the same time, inhibition of plasminogen activation was accompanied by improved clot stability. Further investigations are necessary to establish the clinical relevance of these findings

    High Sensitivity Micro-Elastometry: Applications in Blood Coagulopathy

    No full text
    Highly sensitive methods for the assessment of clot structure can aid in our understanding of coagulation disorders and their risk factors. Rapid and simple clot diagnostic systems are also needed for directing treatment in a broad spectrum of cardiovascular diseases. Here we demonstrate a method for micro-elastometry, named Resonant Acoustic Spectroscopy with Optical Vibrometry (RASOV), which measures the clot elastic modulus (CEM) from the intrinsic resonant frequency of a clot inside a microwell. We observed a high correlation between the CEM of human blood measured by RASOV and a commercial Thromboelastograph (TEG), (R=0.966). Unlike TEG, RASOV requires only 150 μL of sample and offers improved repeatability. Since CEM is known to primarily depend upon fibrin content and network structure, we investigated the CEM of purified clots formed with varying amounts of fibrinogen and thrombin. We found that RASOV was sensitive to changes of fibrinogen content (0.5–6 mg/mL), as well as to the amount of fibrinogen converted to fibrin during clot formation. We then simulated plasma hypercoagulability via hyperfibrinogenemia by spiking whole blood to 150% and 200% of normal fibrinogen levels, and subsequently found that RASOV could detect hyperfibrinogenemia-induced changes in CEM and distinguish these conditions from normal blood
    corecore