12 research outputs found

    Influence of the site of small bowel resection on intestinal epithelial cell apoptosis

    Full text link
    Massive small bowel resection (SBR) results in a significant increase in intestinal epithelial cell (EC) proliferation as well as apoptosis. Because the site of SBR (proximal (P) vs. distal (D)) affects the degree of intestinal adaptation, we hypothesized that different rates of EC apoptosis would also be found between P-SBR and D-SBR models. Wild-type C57BL/6J mice underwent: (1) 60% P-SBR, (2) 60% D-SBR, or (3) SHAM-operation (transaction–reanastomosis) at the mid-gut point. Mice were sacrificed after 7 days. EC apoptosis was measured by TUNEL staining. EC-related apoptotic gene expression including intrinsic and extrinsic pathways was measured with reverse transcriptase-polymerase chain reaction. Bcl-2 and bax protein expression were analyzed by Western immunobloting. Both models of SBR led to significant increases in villus height and crypt depth; however, the morphologic adaptation was significantly higher after P-SBR compared to D-SBR ( P <0.01). Both models of SBR led to significant increases in enterocyte apoptotic rates compared to respective sham levels; however, apoptotic rates were 2.5-fold higher in ileal compared to jejunal segments ( P <0.01). P-SBR led to significant increases in bax (pro-apoptotic) and Fas expression, whereas D-SBR resulted in a significant increase in TNF-α expression ( P <0.01). EC apoptosis seems to be an important component of intestinal adaptation. The significant difference in EC apoptotic rates between proximal and distal intestinal segments appeared to be due to utilization of different mechanisms of action.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47176/1/383_2005_Article_1576.pd

    Advances in short bowel syndrome: an updated review

    Full text link
    Short bowel syndrome (SBS) continues to be an important clinical problem due to its high mortality and morbidity as well as its devastating socioeconomic effects. The past 3 years have witnessed many advances in the investigation of this condition, with the aim of elucidating the cellular and molecular mechanisms of intestinal adaptation. Such information may provide opportunities to exploit various factors that act as growth agents for the remaining bowel mucosa and may suggest new therapeutic strategies to maintain gut integrity, eliminate dependence on total parenteral nutrition, and avoid the need for intestinal transplantation. This review summarizes current research on SBS over the last few years.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47168/1/383_2005_Article_1500.pd
    corecore