51,864 research outputs found

    Field axial cyclic loading experiments on piles driven in sand

    Get PDF
    AbstractMultiple axial cyclic and static loading tests have been performed on industrial steel pipe-piles driven at Dunkerque, northern France. This paper describes the site's geotechnical characteristics and experimental arrangements before defining and describing the stable, unstable or meta-stable responses observed under various combinations of cyclic loading. The interpretation draws on numerical analyses and a parallel model study by Tsuha et al. (2012), relating the field response to the probable shaft shear stress distributions and local effective stress conditions. It is argued that cyclic degradation is controlled by: (i) contraction in the highly constrained interface shear zone and (ii) kinematic yielding within the surrounding soil mass. Finally, interaction diagrams linking shaft response to cyclic loading parameters are proposed based on the field test data and a simplified cyclic capacity predictive approach

    Shape and energy consistent pseudopotentials for correlated electron systems

    Get PDF
    A method is developed for generating pseudopotentials for use in correlated-electron calculations. The paradigms of shape and energy consistency are combined and defined in terms of correlated-electron wave-functions. The resulting energy consistent correlated electron pseudopotentials (eCEPPs) are constructed for H, Li–F, Sc–Fe, and Cu. Their accuracy is quantified by comparing the relaxed molecular geometries and dissociation energies which they provide with all electron results, with all quantities evaluated using coupled cluster singles, doubles, and triples calculations. Errors inherent in the pseudopotentials are also compared with those arising from a number of approximations commonly used with pseudopotentials. The eCEPPs provide a significant improvement in optimised geometries and dissociation energies for small molecules, with errors for the latter being an order-of-magnitude smaller than for Hartree-Fock-based pseudopotentials available in the literature. Gaussian basis sets are optimised for use with these pseudopotentials.R.J.N. and J.R.T. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. (No. EP/J017639/1)

    An enhanced SWAT wetland module to quantify hydraulic interactions between riparian depressional wetlands, rivers and aquifers

    Get PDF
    This study develops a modified version of the Soil and Water Assessment Tool (SWAT) designed to better represent riparian depressional wetlands (SWATrw). It replaces existing unidirectional hydrological interactions between a wetland and a river/aquifer with a more robust bidirectional approach based on hydraulic principles. SWATrw incorporates a more flexible wetland morphometric formula and a connecting channel concept to model wetland-river interactions. SWAT and SWATrw were tested for the Barak-Kushiyara River Basin (Bangladesh and India). Although the two models showed small differences in simulated stream flow, SWATrw outperformed SWAT in reproducing river stages and the pre-monsoon river-spills into riparian wetlands. SWATrw showed that the observed presence of dry season water in the wetland was due to reduced seepage to the local groundwater table whilst continuous seepage simulated by SWAT resulted in the wetland drying out completely. The new model therefore more closely simulates the hydrological interactions between wetlands, rivers and groundwater

    Graphene Nanoplatelets as a Replacement for Carbon Black in Rubber Compounds

    Get PDF
    In this work, we evaluated the processing and reinforcement characteristics of both carbon black (CB) and graphene nanoplatelets (GNPs) within a nitrile butadiene rubber (NBR) matrix. The aspect ratio of the GNPs was measured using atomic force microscopy (AFM) and related to the dispersion and agglomeration within the NBR matrix, as observed by scanning electron microscopy (SEM). The relationship between GNP aspect ratio and mechanical properties was studied by micromechanical modelling. The tensile and tear properties of NBR after compounding with GNPs were enhanced to a greater extent compared to carbon black, while curing times were smaller and scorch times longer, indicating some of the advantages of using GNPs. Overall, the inherent properties of GNPs along with their geometry led to the production of better-performing rubber compounds that can replace their CB-filled counterparts in applications where flexibility, tear strength and compliance are important. The influence of processing on dispersion, orientation and agglomeration of flakes was also highlighted with respect to the Young’s modulus of the NBR compounds

    Reply to "comment on 'High-pressure phases of group-II difluorides: Polymorphism and superionicity' "

    Get PDF
    Cazorla et al. (preceding Comment) criticize our recent results on the high-PT phase diagram of CaF2 [Phys. Rev. B 95, 054118 (2017)]. According to our analysis, Cazorla et al. have not converged their calculations with respect to simulation cell size, undermining the Comment's conclusions about both the high-T behavior of the P62m-CaF2 polymorph, and the use of the QHA in our work. As such, we take this opportunity to emphasize the importance of correctly converging molecular-dynamics simulations to avoid finite-size errors. We compare our quasiharmonic phase diagram for CaF2 with currently available experimental data, and we find it to be entirely consistent and in qualitative agreement with such data. Our prediction of a superionic phase transition in P62m-CaF2 (made on the basis of the QHA) is shown to be accurate, and we argue that simple descriptors, such as phonon frequencies, can offer valuable insight and predictive power concerning superionic behavior.Non

    Accurate and efficient structure factors in ultrasoft pseudopotential and projector augmented wave DFT

    Get PDF
    Structure factors obtained from diffraction experiments are one of the most important quantities for characterizing the electronic and structural properties of materials. Methods for calculating this quantity from plane-wave density functional theory (DFT) codes are typically prohibitively expensive to perform, requiring the electron density to be constructed and evaluated on dense real-space grids. Making use of the projector functions found in both the Vanderbilt ultrasoft pseudopotential and projector augmented wave methods, we implement an approach to calculate structure factors that avoids the use of a dense grid by separating the rapidly changing contributions to the electron density and treating them on logarithmic radial grids. This approach is successfully validated against structure factors obtained from all-electron DFT and experiment for three prototype systems, allowing structure factors to be obtained at all-electron accuracy at a fraction of the cost of previous approaches for plane-wave DFT

    Hydrological impacts of climate change on rice cultivated riparian wetlands in the Upper Meghna River Basin (Bangladesh and India)

    Get PDF
    Riparian depressional wetlands (haors) in the Upper Meghna River Basin of Bangladesh are invaluable agricultural resources. They are completely flooded between June and November and planted with Boro rice when floodwater recedes in December. However, early harvest period (April/May) floods frequently damage ripening rice. A calibrated/validated Soil and Water Assessment Tool for riparian wetland (SWATrw) model is perturbed with bias free (using an improved quantile mapping approach) climate projections from 17 general circulation models (GCMs) for the period 2031–2050. Projected mean annual rainfall increases (200–500 mm or 7–10%). However, during the harvest period lower rainfall (21–75%) and higher evapotranspiration (1–8%) reduces river discharge (5–18%) and wetland inundation (inundation fraction declines of 0.005–0.14). Flooding risk for Boro rice consequently declines (rationalized flood risk reductions of 0.02–0.12). However, the loss of cultivable land (15.3%) to increases in permanent haor inundation represents a major threat to regional food security

    Crystal Structure of the ZrO Phase at Zirconium/Zirconium Oxide Interfaces

    Get PDF
    Zirconium-based alloys are used in water-cooled nuclear reactors for both nuclear fuel cladding and structural components. Under this harsh environment, the main factor limiting the service life of zirconium cladding, and hence fuel burn-up efficiency, is water corrosion. This oxidation process has recently been linked to the presence of a sub-oxide phase with well-defined composition but unknown structure at the metal–oxide interface. In this paper, the combination of first-principles materials modeling and high-resolution electron microscopy is used to identify the structure of this sub-oxide phase, bringing us a step closer to developing strategies to mitigate aqueous oxidation in Zr alloys and prolong the operational lifetime of commercial fuel cladding alloys
    • …
    corecore