75 research outputs found

    Impact of the population at risk of diabetes on projections of diabetes burden in the United States: an epidemic on the way

    Get PDF
    AIMS/HYPOTHESIS: The aim of this study was to make projections of the future diabetes burden for the adult US population based in part on the prevalence of individuals at high risk of developing diabetes. MATERIALS AND METHODS: Models were created from data in the nationally representative National Health and Nutrition Examination Survey (NHANES) II mortality survey (1976–1992), the NHANES III (1988–1994) and the NHANES 1999–2002. Population models for adults (>20 years of age) from NHANES III data were fitted to known diabetes prevalence in the NHANES 1999–2002 before making future projections. We used a multivariable diabetes risk score to estimate the likelihood of diabetes incidence in 10 years. Estimates of future diabetes (diagnosed and undiagnosed) prevalence in 2011, 2021, and 2031 were made under several assumptions. RESULTS: Based on the multivariable diabetes risk score, the number of adults at high risk of diabetes was 38.4 million in 1991 and 49.9 million in 2001. The total diabetes burden is anticipated to be 11.5% (25.4 million) in 2011, 13.5% (32.6 million) in 2021, and 14.5% (37.7 million) in 2031. Among individuals aged 30 to 39 years old who are not currently targeted for screening according to age, the prevalence of diabetes is expected to rise from 3.7% in 2001 to 5.2% in 2031. By 2031, 20.2% of adult Hispanic individuals are expected to have diabetes. CONCLUSIONS/INTERPRETATION: The prevalence of diabetes is projected to rise to substantially greater levels than previously estimated. Diabetes prevalence within the Hispanic community is projected to be potentially overwhelming. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00125-006-0528-5 and is accessible to authorized users

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance

    Analysis of Common and Specific Mechanisms of Liver Function Affected by Nitrotoluene Compounds

    Get PDF
    BACKGROUND: Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. CONCLUSIONS/SIGNIFICANCE: A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds

    Focus on Function – a randomized controlled trial comparing two rehabilitation interventions for young children with cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children with cerebral palsy receive a variety of long-term physical and occupational therapy interventions to facilitate development and to enhance functional independence in movement, self-care, play, school activities and leisure. Considerable human and financial resources are directed at the "intervention" of the problems of cerebral palsy, although the available evidence supporting current interventions is inconclusive. A considerable degree of uncertainty remains about the appropriate therapeutic approaches to manage the habilitation of children with cerebral palsy. The primary objective of this project is to conduct a multi-site randomized clinical trial to evaluate the efficacy of a task/context-focused approach compared to a child-focused remediation approach in improving performance of functional tasks and mobility, increasing participation in everyday activities, and improving quality of life in children 12 months to 5 years of age who have cerebral palsy.</p> <p>Method/Design</p> <p>A multi-centred randomized controlled trial research design will be used. Children will be recruited from a representative sample of children attending publicly-funded regional children's rehabilitation centers serving children with disabilities in Ontario and Alberta in Canada. Target sample size is 220 children with cerebral palsy aged 12 months to 5 years at recruitment date. Therapists are randomly assigned to deliver either a context-focused approach or a child-focused approach. Children follow their therapist into their treatment arm. Outcomes will be evaluated at baseline, after 6 months of treatment and at a 3-month follow-up period. Outcomes represent the components of the International Classification of Functioning, Disability and Health, including body function and structure (range of motion), activities (performance of functional tasks, motor function), participation (involvement in formal and informal activities), and environment (parent perceptions of care, parental empowerment).</p> <p>Discussion</p> <p>This paper presents the background information, design and protocol for a randomized controlled trial comparing a task/context-focused approach to a child-focused remediation approach in improving functional outcomes for young children with cerebral palsy.</p> <p>Trial registration</p> <p>[clinical trial registration #: NCT00469872]</p

    Reactive oxygen species in phagocytic leukocytes

    Get PDF
    Phagocytic leukocytes consume oxygen and generate reactive oxygen species in response to appropriate stimuli. The phagocyte NADPH oxidase, a multiprotein complex, existing in the dissociated state in resting cells becomes assembled into the functional oxidase complex upon stimulation and then generates superoxide anions. Biochemical aspects of the NADPH oxidase are briefly discussed in this review; however, the major focus relates to the contributions of various modes of microscopy to our understanding of the NADPH oxidase and the cell biology of phagocytic leukocytes

    Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The literature suggests a beneficial effect of motor imagery (MI) if combined with physical practice, but detailed descriptions of MI training session (MITS) elements and temporal parameters are lacking. The aim of this review was to identify the characteristics of a successful MITS and compare these for different disciplines, MI session types, task focus, age, gender and MI modification during intervention.</p> <p>Methods</p> <p>An extended systematic literature search using 24 databases was performed for five disciplines: Education, Medicine, Music, Psychology and Sports. References that described an MI intervention that focused on motor skills, performance or strength improvement were included. Information describing 17 MITS elements was extracted based on the PETTLEP (physical, environment, timing, task, learning, emotion, perspective) approach. Seven elements describing the MITS temporal parameters were calculated: study duration, intervention duration, MITS duration, total MITS count, MITS per week, MI trials per MITS and total MI training time.</p> <p>Results</p> <p>Both independent reviewers found 96% congruity, which was tested on a random sample of 20% of all references. After selection, 133 studies reporting 141 MI interventions were included. The locations of the MITS and position of the participants during MI were task-specific. Participants received acoustic detailed MI instructions, which were mostly standardised and live. During MI practice, participants kept their eyes closed. MI training was performed from an internal perspective with a kinaesthetic mode. Changes in MI content, duration and dosage were reported in 31 MI interventions. Familiarisation sessions before the start of the MI intervention were mentioned in 17 reports. MI interventions focused with decreasing relevance on motor-, cognitive- and strength-focused tasks. Average study intervention lasted 34 days, with participants practicing MI on average three times per week for 17 minutes, with 34 MI trials. Average total MI time was 178 minutes including 13 MITS. Reporting rate varied between 25.5% and 95.5%.</p> <p>Conclusions</p> <p>MITS elements of successful interventions were individual, supervised and non-directed sessions, added after physical practice. Successful design characteristics were dominant in the Psychology literature, in interventions focusing on motor and strength-related tasks, in interventions with participants aged 20 to 29 years old, and in MI interventions including participants of both genders. Systematic searching of the MI literature was constrained by the lack of a defined MeSH term.</p

    Precision mouse models with expanded tropism for human pathogens

    Get PDF
    A major limitation of current humanized mouse models is that they primarily enable the analysis of human-specific pathogens that infect hematopoietic cells. However, most human pathogens target other cell types, including epithelial, endothelial and mesenchymal cells. Here, we show that implantation of human lung tissue, which contains up to 40 cell types, including nonhematopoietic cells, into immunodeficient mice (lung-only mice) resulted in the development of a highly vascularized lung implant. We demonstrate that emerging and clinically relevant human pathogens such as Middle East respiratory syndrome coronavirus, Zika virus, respiratory syncytial virus and cytomegalovirus replicate in vivo in these lung implants. When incorporated into bone marrow/liver/thymus humanized mice, lung implants are repopulated with autologous human hematopoietic cells. We show robust antigen-specific humoral and T-cell responses following cytomegalovirus infection that control virus replication. Lung-only mice and bone marrow/liver/thymus-lung humanized mice substantially increase the number of human pathogens that can be studied in vivo, facilitating the in vivo testing of therapeutics
    corecore