8 research outputs found

    Early colonization of dental implants by putative periodontal pathogens in partially edentulous patients

    No full text
    There is limited scientific information available on the early colonization of the peri-implant pockets in partially edentulous individuals. Knowledge about this process is one step in better understanding the etiology and pathogenesis of peri-implantitis. In this study, the early colonization of the peri-implant pockets by putative periodontal pathogens was studied in 20 partially edentulous individuals using anaerobic culture techniques. At baseline, the presence and levels of putative periodontal pathogens in the microflora of periodontal pockets and saliva were established. Immediately after loading of the titanium implants and after 6 and 12 months the presence and levels of selected putative periodontal pathogens were determined in periodontal and peri-implant pockets. A second aim was to detect bacterial contamination of the implant site and the inside of the implant. At baseline, the most frequently isolated species from the periodontal pockets were Fusobacterium nucleatum, Prevotella intermedia and Peptostreptococcus micros. Bacteroides forsythus, Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis were isolated from 9, 2 and 3 patients respectively. Six months after placing of the bridges, the majority of the implant sites had detectable levels of most periodontal bacterial species with the exception of A. actinomycetemcomitans which could not be isolated from any of the peri-implant samples during the experimental period, although 2 patients had this organism at baseline. In 2 patients with detectable subgingival P. gingivalis at baseline this species was found after 12 months in the peri-implant sites. One of these patients lost 2 implants which was associated with a high proportion of P. gingivalis in the peri-implant pockets. A second patient developed 2 fistulas around 2 implants at 8 months and this event was also associated with the presence of P. gingivalis. It is concluded that proper periodontal infection control before instalment of dental implants in partially edentulous patients may prevent early bacterial complications

    Nanodentistry: A Paradigm Shift-from Fiction to Reality

    No full text
    Nanodentistry is an emerging field with significant potential to yield new generation of technologically advanced clinical tools and devices for oral healthcare. Nanoscale topology and quantitative biomechanical or biophysical analysis of dental surfaces are of significant interest. In particular, using Atomic force microscopy techniques—diseases such as dental caries, tooth hypersensitivity, and oral cancer can be quantified based on morphological, biophysical and biochemical nanoscale properties of tooth surface itself and dental materials or oral fluids such as saliva. An outlook on future “nanodentistry” developments such as saliva exosomes based diagnostics, designing biocompatible, antimicrobial dental implants and personalized dental healthcare is presented. This article examines current applications of nanotechnology alongside proposed applications in the future and aims to demonstrate that, as well as a good deal of science fiction, there is some tangible science fact emerging from this novel multidisciplinary science

    Evidence of bacterial etiology: a historical perspective

    No full text
    corecore