42 research outputs found

    Towards practical applications of EQCN experiments to study Pt anchor Sites on carbon surfaces

    Get PDF
    This work investigates the viability and outlines the current challenges in electrochemical quartz crystal nanobalance (EQCN) experiments on supported Pt catalysts. EQCN experiments involving Pt supported on 2-D “surface-treated graphite sputtered onto quartz crystal” (Pt/MFG-H) catalysts were compared to standard polycrystalline Pt (Ptpoly), which showed similarities in frequency versus potential trends; however, the Pt/MFG-H catalysts obtained higher frequencies due to the support capacitance. The physical characterizations (XRD and XPS) and electrochemical responses, mainly cyclic voltammetry in acidic media and the ferri/ferrocyanide couple, of the 2-D Pt/MFG-H were compared to the representative 2-D Pt supported on treated highly orientated pyrolytic graphite (Pt/HOPG-H), in order to make assertions on the similarities between the two catalysts. The XRD diffraction patterns and the XPS valence band structure for the treated and untreated MFG (-H and -P, respectively) and HOPG (-H and -P, respectively) demonstrated similarities. Nevertheless, the cyclic voltammograms and peak positions of the ferri/ferrocyanide couple between the treated and untreated MFG and HOPG catalysts were dissimilar. However, EQCN may be used qualitatively between the two different 2-D catalysts since the same trends in electrochemical responses before and after treatment of the MFG and HOPG catalysts were seen. Hence, the EQCN technique can be used in future studies as an alternative method to study degradation mechanisms of Pt and carbon for PEFCs

    Mapping brain networks in awake mice using combined optical neural control and fMRI

    No full text
    Behaviors and brain disorders involve neural circuits that are widely distributed in the brain. The ability to map the functional connectivity of distributed circuits, and to assess how this connectivity evolves over time, will be facilitated by methods for characterizing the network impact of activating a specific subcircuit, cell type, or projection pathway. We describe here an approach using high-resolution blood oxygenation level-dependent (BOLD) functional MRI (fMRI) of the awake mouse brain-to measure the distributed BOLD response evoked by optical activation of a local, defined cell class expressing the light-gated ion channel channelrhodopsin-2 (ChR2). The utility of this opto-fMRI approach was explored by identifying known cortical and subcortical targets of pyramidal cells of the primary somatosensory cortex (SI) and by analyzing how the set of regions recruited by optogenetically driven SI activity differs between the awake and anesthetized states. Results showed positive BOLD responses in a distributed network that included secondary somatosensory cortex (SII), primary motor cortex (MI), caudoputamen (CP), and contralateral SI (c-SI). Measures in awake compared with anesthetized mice (0.7% isoflurane) showed significantly increased BOLD response in the local region (SI) and indirectly stimulated regions (SII, MI, CP, and c-SI), as well as increased BOLD signal temporal correlations between pairs of regions. These collective results suggest opto-fMRI can provide a controlled means for characterizing the distributed network downstream of a defined cell class in the awake brain. Opto-fMRI may find use in examining causal links between defined circuit elements in diverse behaviors and pathologies

    The Random-Cluster Model

    No full text
    class of random-cluster models is a unification of a variety of sto-ďż˝ ďż˝ ďż˝ The chastic processes of significance for probability and statistical physics, including percolation, Ising, and Potts models; in addition, their study has impact on the theory of certain random combinatorial structures, and of electrical networks. Much (but not all) of the physical theory of Ising/Potts models is best implemented in the context of the random-cluster representation. This systematic summary of random-cluster models includes accounts of the fundamental methods and inequalities, the uniqueness and specification of infinite-volume measures, the existence and nature of the phase transition, and the structure of the subcritical and supercritical phases. The theory for two-dimensional lattices is better developed than for three and more dimensions. There is a rich collection of open problems, including some of substantial significance for the general area of disordered systems, and these are highlighted when encountered. Amongst the major open questions, there is the problem of ascertaining the exact nature of the phase transition for general values of the cluster-weightin
    corecore