163 research outputs found
Experience in hepatic resection for metastatic colorectal cancer: Analysis of clinical and pathologic risk factors
Background. The selection of patients for resective therapy of hepatic colorectal metastases remains controversial. A number of clinical and pathologic prognostic risk factors have been variably reported to influence survival. Methods. Between January 1981 and December 1991, 204 patients underwent curative hepatic resection for metastatic colorectal cancer. Fourteen clinical and pathologic determinants previously reported to influence outcome were examined retrospectively. This led to a proposed TNM staging system for metastatic colorectal cancer (mTNM). Results. No operative deaths occurred (death within 1 month). Overall 1-, 3-, and 5-year survivals were 91%, 43%, and 32%, respectively. Gender, Dukes' classification, site of primary colorectal cancer, histologic differentiation, size of metastatic tumor, and intraoperative blood transfusion requirement were not statistically significant prognostic factors (p > 0.05). Age of 60 years or more, interval of 24 months or less between colorectal and hepatic resection, four or more gross tumors, bilobar involvement, positive resection margin, lymph node involvement, and direct invasion to adjacent organs were significant poor prognostic factors (p < 0.05). In the absence of nodal disease or direct invasion, patients with unilobar solitary tumor of any size, or unilobar multiple tumors of 2 cm or smaller (stages I and II) had the highest survival rates of 93% at 1 year, 68% at 3 years, and 61% at 5 years. Unilobar disease with multiple lesions greater than 2 cm (stage III) resulted in 1-, 3-, and 5-year survivals of 98%, 45%, and 28%, respectively. Patients with bilobar involvement (multiple tumors, any size, or a single large metastasis) (stage IVA) had survival rates of 88% at 1 year, 28% at 3 years, and 20% at 5 years (p < 0.00001). Patients with nodal involvement or extrahepatic disease (stage IVB) experienced the poorest outcome with 1-, 3- , and 5-year survivals of 80%, 12%, and 0%, respectively (p < 0.00001). Conclusions. The proposed mTNM staging system appears to be useful in predicting the outcomes after hepatic resection of metastatic colorectal tumors
Pneumothorax and subcutaneous emphysema secondary to blunt chest injury
This is the case of a patient with a history of blunt chest trauma associated with subcutaneous emphysema and pneumothorax. The patient complained of inspiratory stridor on presentation. Anatomical relationships can explain the pathophysiological process
Formalizing enrichment mechanisms for bibliographic ontologies in the Semantic Web
This paper presents an analysis of current limitations to the reuse of bibliographic data in the Semantic Web and a research proposal towards solutions to overcome them. The limitations identified derive from the insufficient convergence between existing bibliographic ontologies and the principles and techniques of linked open data (LOD); lack of a common conceptual framework for a diversity of standards often used together; reduced use of links to external vocabularies and absence of Semantic Web mechanisms to formalize relationships between vocabularies, as well as limitations of Semantic Web languages for the requirements of bibliographic data interoperability. A proposal is advanced to investigate the hypothesis of creating a reference model and specifying a superontology to overcome the misalignments found, as well as the use of SHACL (Shapes Constraint Language) to solve current limitations of RDF languages.info:eu-repo/semantics/acceptedVersio
Inhibition of apoptosis prevents West Nile virus induced cell death
We found that WNV infection induces cell death in the brain-derived tumour cell line T98G by apoptosis under involvement of constituents of the extrinsic as well as the intrinsic apoptotic pathways. Our results illuminate the molecular mechanism of WNV-induced neural cell death
Multilingualism and the Brexit referendum
This chapter argues that the (lack of) foreign language skills has contributed to the outcome of the Brexit referendum. Theory suggests that speaking foreign languages reduces perceptions of cultural distance and contributes to the formation of transnational identities. Research also shows a link between language skills and European identity (Kuhn 2015; Díez Medrano 2018). Did Britons’ relative lack of foreign language skills play a role in the Brexit decision? Using matching methods and data from the referendum wave of the British Election Study, it is possible to estimate the effect of foreign language skills on the referendum vote. The results suggest that a significant effect of foreign language skills remains, even when taking into account education, age, gender, income, and region, party preference, and personality differences
Measurement of the Lambda_b Lifetime in Lambda_b --> J/psi Lambda0 in p-pbar Collisions at sqrt(s)=1.96 TeV
We report a measurement of the Lambda_b lifetime in the exclusive decay
Lambda_b --> J/psi Lambda0 in p-pbar collisions at sqrt(s) = 1.96 TeV using an
integrated luminosity of 1.0 fb^{-1} of data collected by the CDF II detector
at the Fermilab Tevatron. Using fully reconstructed decays, we measure
tau(Lambda_b) = 1.593 ^{+0.083}_{-0.078} (stat.) +- 0.033 (syst.) ps. This is
the single most precise measurement of tau(Lambda_b) and is 3.2 sigma higher
than the current world average.Comment: 7 Pages, 2 Figures, 1 Table. Submitted to Phys. Rev. Let
Structure and dynamics of the active Gs-coupled human secretin receptor
The class B secretin GPCR (SecR) has broad physiological effects, with target potential for treatment of metabolic and cardiovascular disease. Molecular understanding of SecR binding and activation is important for its therapeutic exploitation. We combined cryo-electron microscopy, molecular dynamics, and biochemical cross-linking to determine a 2.3 Å structure, and interrogate dynamics, of secretin bound to the SecR:Gs complex. SecR exhibited a unique organization of its extracellular domain (ECD) relative to its 7-transmembrane (TM) core, forming more extended interactions than other family members. Numerous polar interactions formed between secretin and the receptor extracellular loops (ECLs) and TM helices. Cysteine-cross-linking, cryo-electron microscopy multivariate analysis and molecular dynamics simulations revealed that interactions between peptide and receptor were dynamic, and suggested a model for initial peptide engagement where early interactions between the far N-terminus of the peptide and SecR ECL2 likely occur following initial binding of the peptide C-terminus to the ECD
Glycyrrhizin Exerts Antioxidative Effects in H5N1 Influenza A Virus-Infected Cells and Inhibits Virus Replication and Pro-Inflammatory Gene Expression
Glycyrrhizin is known to exert antiviral and anti-inflammatory effects. Here, the effects of an approved parenteral glycyrrhizin preparation (Stronger Neo-Minophafen C) were investigated on highly pathogenic influenza A H5N1 virus replication, H5N1-induced apoptosis, and H5N1-induced pro-inflammatory responses in lung epithelial (A549) cells. Therapeutic glycyrrhizin concentrations substantially inhibited H5N1-induced expression of the pro-inflammatory molecules CXCL10, interleukin 6, CCL2, and CCL5 (effective glycyrrhizin concentrations 25 to 50 µg/ml) but interfered with H5N1 replication and H5N1-induced apoptosis to a lesser extent (effective glycyrrhizin concentrations 100 µg/ml or higher). Glycyrrhizin also diminished monocyte migration towards supernatants of H5N1-infected A549 cells. The mechanism by which glycyrrhizin interferes with H5N1 replication and H5N1-induced pro-inflammatory gene expression includes inhibition of H5N1-induced formation of reactive oxygen species and (in turn) reduced activation of NFκB, JNK, and p38, redox-sensitive signalling events known to be relevant for influenza A virus replication. Therefore, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease
Space Division Multiplexing in Optical Fibres
Optical communications technology has made enormous and steady progress for
several decades, providing the key resource in our increasingly
information-driven society and economy. Much of this progress has been in
finding innovative ways to increase the data carrying capacity of a single
optical fibre. In this search, researchers have explored (and close to
maximally exploited) every available degree of freedom, and even commercial
systems now utilize multiplexing in time, wavelength, polarization, and phase
to speed more information through the fibre infrastructure. Conspicuously, one
potentially enormous source of improvement has however been left untapped in
these systems: fibres can easily support hundreds of spatial modes, but today's
commercial systems (single-mode or multi-mode) make no attempt to use these as
parallel channels for independent signals.Comment: to appear in Nature Photonic
Recommended from our members
Rethinking soil water repellency and its management
Soil water repellency (SWR) is a widespread challenge to plant establishment and growth. Despite considerable research, it remains a recalcitrant problem for which few alleviation technologies or solutions have been developed. Previous research has focused on SWR as a problem to be overcome, however, it is an inherent feature of many native ecosystems where it contributes to ecosystem functions. Therefore, we propose a shift in the way SWR is perceived in agriculture and in ecological restoration, from a problem to be solved, to an opportunity to be harnessed. A new focus on potential ecological benefits of SWR is particularly timely given increasing incidence, frequency and severity of hotter droughts in many regions of the world. Our new way of conceptualising SWR seeks to understand how SWR can be temporarily alleviated at a micro-scale to successfully establish plants, and then harnessed in the longer term and at larger spatial scales to enhance soil water storage to act as a “drought-proofing” tool for plant survival in water-limited soils. For this to occur, we suggest research focusing on the alignment of physico-chemical and microbial properties and dynamics of SWR and, based on this mechanistic understanding, create products and interventions to improve success of plant establishment in agriculture, restoration and conservation contexts. In this paper, we outline the rationale for a new way of conceptualising SWR, and the research priorities needed to fill critical knowledge gaps in order to harness the ecological benefits from managing SWR
- …