67 research outputs found
Rabies Virus Infection Induces Type I Interferon Production in an IPS-1 Dependent Manner While Dendritic Cell Activation Relies on IFNAR Signaling
As with many viruses, rabies virus (RABV) infection induces type I interferon (IFN) production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC) induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC) in order to differentiate which pattern recognition receptor(s) (PRR) is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5β/β and RIG-Iβ/β mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-Iβ/β cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1β/β mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis
A Freeze Frame View of Vesicular Stomatitis Virus Transcription Defines a Minimal Length of RNA for 5β² Processing
The RNA synthesis machinery of vesicular stomatitis virus (VSV) comprises the genomic RNA encapsidated by the viral nucleocapsid protein (N) and associated with the RNA dependent RNA polymerase, the viral components of which are a large protein (L) and an accessory phosphoprotein (P). The 241 kDa L protein contains all the enzymatic activities necessary for synthesis of the viral mRNAs, including capping, cap methylation and polyadenylation. Those RNA processing reactions are intimately coordinated with nucleotide polymerization such that failure to cap results in termination of transcription and failure to methylate can result in hyper polyadenylation. The mRNA processing reactions thus serve as a critical check point in viral RNA synthesis which may control the synthesis of incorrectly modified RNAs. Here, we report the length at which viral transcripts first gain access to the capping machinery during synthesis. By reconstitution of transcription in vitro with highly purified recombinant polymerase and engineered templates in which we omitted sites for incorporation of UTP, we found that transcripts that were 30-nucleotides in length were uncapped, whereas those that were 31-nucleotides in length contained a cap structure. The minimal RNA length required for mRNA cap addition was also sufficient for methylation since the 31-nucleotide long transcripts were methylated at both ribose-2β²-O and guanine-N-7 positions. This work provides insights into the spatial relationship between the active sites for the RNA dependent RNA polymerase and polyribonucleotidyltransferase responsible for capping of the viral RNA. We combine the present findings with our recently described electron microscopic structure of the VSV polymerase and propose a model of how the spatial arrangement of the capping activities of L may influence nucleotide polymerization
Emergence of the rtA181T/sW172* mutant increased the risk of hepatoma occurrence in patients with lamivudine-resistant chronic hepatitis B
<p>Abstract</p> <p>Background</p> <p>Development of the hepatitis B virus (HBV) rtA181T/sW172* mutant could occur during prolonged lamivudine (LAM) therapy, conferring cross resistance to adefovir. Recent studies demonstrated an increased oncogenic potential of this mutant in NIH3T3 cells. In this study, we aimed to investigate the clinical significance of this finding.</p> <p>Methods</p> <p>Serum samples from 123 LAM-resistant chronic hepatitis B patients were submitted for virological assays. A highly sensitive amplification created restriction enzyme site (ACRES) method was devised to detect small amounts of the rtA181T mutant in the serum. Virological factors including HBV-DNA level, genotype, precore G1896A, BCP A1762T/G1764A, rtM204I/V, rtA181T and pre-S internal deletion mutations as well as clinical variables including subsequent use of rescue drugs were submitted for outcome analysis.</p> <p>Results</p> <p>By use of the highly sensitive ACRES method, the rtA181T mutant was detectable in 10 of the 123 LAM-resistant patients. During the mean follow-up period of 26.2 Β± 16.4 months (range 2 to 108 months), 3 of the 10 (30.0%) rtA181T-positive patients and 2 of the 113 (1.8%) rtA181T-negative patients developed hepatocellular carcinoma (HCC). Kaplan-Meier analysis indicated that the presence of rtA181T mutation (P < 0.001), age > 50 years (P = 0.001), and liver cirrhosis (P < 0.001) were significantly associated with subsequent occurrence of HCC. All 5 HCC patients belonged to the older age and cirrhosis groups.</p> <p>Conclusions</p> <p>Emergence of the rtA181T/sW172* mutant in LAM-resistant patients increased the risk of HCC development in the subsequent courses of antiviral therapy.</p
- β¦