1,193 research outputs found

    Instantons and Matter in N=1/2 Supersymmetric Gauge Theory

    Full text link
    We extend the instanton calculus for N=1/2 U(2) supersymmetric gauge theory by including one massless flavor. We write the equations of motion at leading order in the coupling constant and we solve them exactly in the non(anti)commutativity parameter C. The profile of the matter superfield is deformed through linear and quadratic corrections in C. Higher order corrections are absent because of the fermionic nature of the back-reaction. The instanton effective action, in addition to the usual 't Hooft term, includes a contribution of order C^2 and is N=1/2 invariant. We argue that the N=1 result for the gluino condensate is not modified by the presence of the new term in the effective action.Comment: 33 pages, harvmac; v2: minor changes, added references; v3: added analysis of the instanton measure in section

    A Note on Twistor Gravity Amplitudes

    Get PDF
    In a recent paper, Witten proposed a surprising connection between perturbative gauge theory and a certain topological model in twistor space. In particular, he showed that gluon amplitudes are localized on holomorphic curves. In this note we present some preliminary considerations on the possibility of having a similar localization for gravity amplitudes.Comment: 14 pages, 6 figures. v2: minor changes, added referenc

    Two time scales and FDT violation in a Finite Dimensional Model for Structural Glasses

    Get PDF
    We study the breakdown of fluctuation-dissipation relations between time dependent density-density correlations and associated responses following a quench in chemical potential in the Frustrated Ising Lattice Gas. The corresponding slow dynamics is characterized by two well separated time scales which are characterized by a constant value of the fluctuation-dissipation ratio. This result is particularly relevant taking into account that activated processes dominate the long time dynamics of the system.Comment: 4 pages, 3 figs, Phys. Rev. Lett. (in press

    Do not drop: Mechanical shock in vials causes cavitation, protein aggregation and particle formation

    Get PDF
    Industry experience suggests that g-forces sustained when vials containing protein formulations are accidentally dropped can cause aggregation and particle formation. To study this phenomenon, a shock tower was used to apply controlled g-forces to glass vials containing formulations of two monoclonal antibodies and recombinant human growth hormone (rhGH). High-speed video analysis showed cavitation bubbles forming within 30 μs and subsequently collapsing in the formulations. As a result of echoing shock waves, bubbles collapsed and reappeared periodically over a millisecond timecourse. Fluid mechanics simulations showed low-pressure regions within the fluid where cavitation would be favored. A hydroxyphenylfluorescein assay determined that cavitation produced hydroxyl radicals. When mechanical shock was applied to vials containing protein formulations, gelatinous particles appeared on the vial walls. Size exclusion chromatographic analysis of the formulations after shock did not detect changes in monomer or soluble aggregate concentrations. However, subvisible particle counts determined by microflow image analysis increased. The mass of protein attached to the vial walls increased with increasing drop height. Both protein in bulk solution and protein that became attached to the vial walls after shock were analyzed by mass spectrometry. rhGH recovered from the vial walls in some samples revealed oxidation of Met and/or Trp residues

    Heterogeneities in systems with quenched disorder

    Full text link
    We study the strong role played by structural (quenched) heterogeneities on static and dynamic properties of the Frustrated Ising Lattice Gas in two dimensions, already in the liquid phase. Differently from the dynamical heterogeneities observed in other glass models in this case they may have infinite lifetime and be spatially pinned by the quenched disorder. We consider a measure of local frustration, show how it induces the appearance of spatial heterogeneities and how this reflects in the observed behavior of equilibrium density distributions and dynamic correlation functions.Comment: 8 page

    Dynamics of the frustrated Ising lattice gas

    Full text link
    The dynamical properties of a three dimensional model glass, the frustrated Ising lattice gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One time quantities like density and two time ones like correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of density autocorrelations is reminiscent of spin glass phenomenology with violations of the Fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses.Comment: to appear in Phys. Rev. E, november (2000

    BASS. XXV. DR2 Broad-line-based Black Hole Mass Estimates and Biases from Obscuration

    Get PDF
    We present measurements of broad emission lines and virial estimates of supermassive black hole masses (M BH) for a large sample of ultrahard X-ray-selected active galactic nuclei (AGNs) as part of the second data release of the BAT AGN Spectroscopic Survey (BASS/DR2). Our catalog includes M BH estimates for a total of 689 AGNs, determined from the Hα, Hβ, Mg ii λ2798, and/or C iv λ1549 broad emission lines. The core sample includes a total of 512 AGNs drawn from the 70 month Swift/BAT all-sky catalog. We also provide measurements for 177 additional AGNs that are drawn from deeper Swift/BAT survey data. We study the links between M BH estimates and line-of-sight obscuration measured from X-ray spectral analysis. We find that broad Hα emission lines in obscured AGNs ( log(NH/cm−2)>22.0 ) are on average a factor of 8.0−2.4+4.1 weaker relative to ultrahard X-ray emission and about 35−12+7 % narrower than those in unobscured sources (i.e., log(NH/cm−2)1 dex) masses for Type 1.9 sources (AGNs with broad Hα but no broad Hβ) and/or sources with log(NH/cm−2)≳22.0 . We provide simple multiplicative corrections for the observed luminosity and width of the broad Hα component (L[bHα] and FWHM[bHα]) in such sources to account for this effect and to (partially) remedy M BH estimates for Type 1.9 objects. As a key ingredient of BASS/DR2, our work provides the community with the data needed to further study powerful AGNs in the low-redshift universe

    New Species in the Old World: Europe as a Frontier in Biodiversity Exploration, a Test Bed for 21st Century Taxonomy

    Get PDF
    The number of described species on the planet is about 1.9 million, with ca. 17,000 new species described annually, mostly from the tropics. However, taxonomy is usually described as a science in crisis, lacking manpower and funding, a politically acknowledged problem known as the Taxonomic Impediment. Using data from the Fauna Europaea database and the Zoological Record, we show that contrary to general belief, developed and heavily-studied parts of the world are important reservoirs of unknown species. In Europe, new species of multicellular terrestrial and freshwater animals are being discovered and named at an unprecedented rate: since the 1950s, more than 770 new species are on average described each year from Europe, which add to the 125,000 terrestrial and freshwater multicellular species already known in this region. There is no sign of having reached a plateau that would allow for the assessment of the magnitude of European biodiversity. More remarkably, over 60% of these new species are described by non-professional taxonomists. Amateurs are recognized as an essential part of the workforce in ecology and astronomy, but the magnitude of non-professional taxonomist contributions to alpha-taxonomy has not been fully realized until now. Our results stress the importance of developing a system that better supports and guides this formidable workforce, as we seek to overcome the Taxonomic Impediment and speed up the process of describing the planetary biodiversity before it is too late

    Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude

    Get PDF
    We report here the measurements of the energy spectra of atmospheric muons and of the cosmic ray primary proton and helium nuclei in a single experiment. These were carried out using the MASS superconducting spectrometer in a balloon flight experiment in 1991. The relevance of these results to the atmospheric neutrino anomaly is emphasized. In particular, this approach allows uncertainties caused by the level of solar modulation, the geomagnetic cut-off of the primaries and possible experimental systematics to be decoupled in the comparison of calculated fluxes of muons to measured muon fluxes. The muon observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886 g/cmsquared, respectively. The proton and helium primary measurements cover the rigidity range from 3 to 100 GV, in which both the solar modulation and the geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to appear in Phys. Rev.

    Both COVID-19 infection and vaccination induce high-affinity cross-clade responses to SARS-CoV-2 variants

    Full text link
    The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination. Antibody affinity was similar against the wild-type, delta, and omicron variants (KA ranges: 122 ± 155, 159 ± 148, 211 ± 307 μM-1, respectively), indicating a surprisingly broad and mature cross-clade immune response. Postinfectious and vaccinated subjects showed different IgG profiles, with IgG3 (p-value = 0.002) against spike being more prominent in the former group. Lastly, we found that the ELISA titers correlated linearly with measured concentrations (R = 0.72) but not with affinity (R = 0.29). These findings suggest that the wild-type and delta spike induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination
    corecore