23,477 research outputs found
Fermi detected blazars seen by INTEGRAL
Multiwavelength observations are essential to constrain physical parameters
of the blazars observed by Fermi/LAT. Among the 187 AGN significantly detected
in public INTEGRAL data above 20 keV by the imager IBIS/ISGRI, 20 blazars were
detected. 15 of these sources allowed significant spectral extraction. They
show hard X-ray spectra with an average photon index of 2.1+-0.1 and a hard
X-ray luminosity of L(20-100 keV) = 1.3e46 erg/s. 15 of the INTEGRAL blazars
are also visible in the first 16 months of the Fermi/LAT data, thus allowing to
constrain the inverse Compton branch in these cases. Among others, we analyse
the LAT data of four blazars which were not included in the Fermi LAT Bright
AGN Sample based on the first 3 months of the mission: QSO B0836+710, H
1426+428, RX J1924.8-2914, and PKS 2149-306. Especially for blazars during
bright outbursts, as already observed simultaneously by INTEGRAL and Fermi
(e.g. 3C 454.3 and Mrk 421), INTEGRAL provides unique spectral coverage up to
several hundred keV. We present the spectral analysis of INTEGRAL and Fermi
data and demonstrate the potential of INTEGRAL observations of Fermi detected
blazars in outburst by analysing the combined data set of the persistent radio
galaxy Cen A.Comment: 5 pages, 5 figures, 2009 Fermi Symposium, eConf Proceedings C09112
Impact of foregrounds on Cosmic Microwave Background maps
We discuss the possible impact of astrophysical foregrounds on three recent
exciting results of Cosmic Microwave Background (CMB) experiments: the WMAP
measurements of the temperature-polarization (TE) correlation power spectrum,
the detection of CMB polarization fluctuations on degree scales by the DASI
experiment, and the excess power on arcminute scales reported by the CBI and
BIMA groups. A big contribution from the Galactic synchrotron emission to the
TE power spectrum on large angular scales is indeed expected, in the lower
frequency WMAP channels, based on current, albeit very uncertain, models; at
higher frequencies the rapid decrease of the synchrotron signal may be, to some
extent, compensated by polarized dust emission. Recent measurements of
polarization properties of extragalactic radio sources at high radio frequency
indicate that their contamination of the CMB polarization on degree scales at
30 GHz is substantially below the expected CMB E-mode amplitude. Adding the
synchrotron contribution, we estimate that the overall foreground contamination
of the signal detected by DASI may be significant but not dominant. The excess
power on arc-min scales detected by the BIMA experiment may be due to
galactic-scale Sunyaev-Zeldovich effects, if the proto-galactic gas is heated
to its virial temperature and its cooling time is comparable to the Hubble time
at the epoch of galaxy formation. A substantial contamination by radio sources
of the signal reported by the CBI group on scales somewhat larger than BIMA's
cannot be easily ruled out.Comment: 10 pages, 5 figures, to appear in proc. int. conf. "Thinking,
Observing and Mining the Universe", Sorrento, Sept. 200
A microscopic description of the aging dynamics: fluctuation-dissipation relations, effective temperature and heterogeneities
We consider the dynamics of a diluted mean-field spin glass model in the
aging regime. The model presents a particularly rich heterogeneous behavior. In
order to catch this behavior, we perform a **spin-by-spin analysis** for a
**given disorder realization**. The results compare well with the outcome of a
static calculation which uses the ``survey propagation'' algorithm of Mezard,
Parisi, and Zecchina [Sciencexpress 10.1126/science.1073287 (2002)]. We thus
confirm the connection between statics and dynamics at the level of single
degrees of freedom. Moreover, working with single-site quantities, we can
introduce a new response-vs-correlation plot, which clearly shows how
heterogeneous degrees of freedom undergo coherent structural rearrangements.
Finally we discuss the general scenario which emerges from our work and
(possibly) applies to more realistic glassy models. Interestingly enough, some
features of this scenario can be understood recurring to thermometric
considerations.Comment: 4 pages, 5 figures (7 eps files
Realization of Universal Optimal Quantum Machines by Projective Operators and Stochastic Maps
Optimal quantum machines can be implemented by linear projective operations.
In the present work a general qubit symmetrization theory is presented by
investigating the close links to the qubit purification process and to the
programmable teleportation of any generic optimal anti-unitary map. In
addition, the contextual realization of the N ->M cloning map and of the
teleportation of the N->(M-N) universal NOT gate is analyzed by a novel and
very general angular momentum theory. An extended set of experimental
realizations by state symmetrization linear optical procedures is reported.
These include the 1->2 cloning process, the UNOT gate and the quantum
tomographic characterization of the optimal partial transpose map of
polarization encoded qubits.Comment: 11 pages, 7 figure
Transient increases in intracellular calcium and reactive oxygen species levels in TCam-2 cells exposed to microgravity
The effects of microgravity on functions of the human body are well described, including alterations in the male and female reproductive systems. In the present study, TCam-2 cells, which are considered a good model of mitotically active male germ cells, were used to investigate intracellular signalling and cell metabolism during exposure to simulated microgravity, a condition that affects cell shape and cytoskeletal architecture. After a 24 hour exposure to simulated microgravity, TCam-2 cells showed 1) a decreased proliferation rate and a delay in cell cycle progression, 2) increased anaerobic metabolism accompanied by increased levels of intracellular Ca(2+), reactive oxygen species and superoxide anion and modifications in mitochondrial morphology. Interestingly, all these events were transient and were no longer evident after 48 hours of exposure. The presence of antioxidants prevented not only the effects described above but also the modifications in cytoskeletal architecture and the activation of the autophagy process induced by simulated microgravity. In conclusion, in the TCam-2 cell model, simulated microgravity activated the oxidative machinery, triggering transient macroscopic cell events, such as a reduction in the proliferation rate, changes in cytoskeleton-driven shape and autophagy activation
Single Superconducting Split-Ring Resonator Electrodynamics
We investigate the microwave electrodynamic properties of a single
superconducting thin film split-ring resonator (SRR). The experiments were
performed in an all-Nb waveguide, with Nb wires and Nb SRRs. Transmission data
showed a high-Q stopband for a single Nb SRR ( at 4.2 K)
below , and no such feature for a Cu SRR, or closed Nb loops, of similar
dimensions. Adding SRRs increased the bandwidth, but decreased the insertion
loss of the features. Placing the Nb SRR into an array of wires produced a
single, elementary negative-index passband ( at 4.2 K).
Changes in the features due to the superconducting kinetic inductance were
observed. Models for the SRR permeability, and the wire dielectric response,
were used to fit the data.Comment: 4 pages, 3 figures, RevTex, submitted to Applied Physics Letters.
Updated version includes mention of bianisotropy, better looking figures, and
different temperature dat
- …